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A B S T R A C T   

Nowadays, online applications are moving to the cloud, and for delay-sensitive ones, the cloud is being extended 
with edge/fog domains. Emerging cloud platforms that tightly integrate compute and network resources enable 
novel services, such as versatile IoT (Internet of Things), augmented reality or Tactile Internet applications. 
Virtual infrastructure managers (VIMs), network controllers and upper-level orchestrators are in charge of 
managing these distributed resources. A key and challenging task of these orchestrators is to find the proper 
placement for software components of the services. As the basic variant of the related theoretical problem 
(Virtual Network Embedding) is known to be 𝒩℘-hard, heuristic solutions and approximations can be addressed. 
In this paper, we propose two architecture options together with proof-of-concept prototypes and corresponding 
embedding algorithms, which enable the provisioning of delay-sensitive IoT applications. On the one hand, we 
extend the VIM itself with network-awareness, typically not available in today’s VIMs. On the other hand, we 
propose a multi-layer orchestration system where an orchestrator is added on top of VIMs and network con
trollers to integrate different resource domains. We argue that the large-scale performance and feasibility of the 
proposals can only be evaluated with complete prototypes, including all relevant components. Therefore, we 
implemented fully-fledged solutions and conducted large-scale experiments to reveal the scalability character
istics of both approaches. We found that our VIM extension can be a valid option for single-provider setups 
encompassing even 100 edge domains (Points of Presence equipped with multiple servers) and serving a few 
hundreds of customers. Whereas, our multi-layer orchestration system showed better scaling characteristics in a 
wider range of scenarios at the cost of a more complex control plane including additional entities and novel APIs 
(Application Programming Interfaces).   

1. Introduction 

Fog and edge computing are novel concepts extending traditional 
cloud computing approach by deploying compute resources closer to 
customers and end devices. Although the two concepts are similar since 
both shift the computation and storage closer to the edge of the network, 
they are not identical. As the authors of Yousefpour et al. (2019) and Ren 
et al. (2019) emphasize, fog computing has an n-tier hierarchical ar
chitecture that means all the network devices along the routing path 
between the end device and the cloud can provide computing, 
networking, storage, control, and acceleration services. In contrast, edge 
computing tends to be limited to computing at servers deployed one (or 

a few) hop away from the end devices typically at macro or micro base 
stations. Apart from the differences, both approaches enable several 
future 5G applications and network services, such as IoT applications, 
Tactile Internet, AR/VR (augmented/virtual reality) use-cases, or 
remote driving. Edge resources provide execution environments close to 
users in terms of latency (e.g., in mobile base stations). By these means, 
on the one hand, customers’ devices can offload computational tasks to 
this environment instead of consuming their local resources. On the 
other hand, latency-critical functions can be offloaded from central 
clouds to the edge enabling critical machine type communication which 
is required by various envisioned services. 

A dedicated component, namely the resource orchestrator (RO), is in 
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charge of finding the proper placement of software components real
izing the service. Following ETSI’s1 terminologies on Network Function 
Virtualization (NFV) (White Paper, 2013), the software modules 
composing the network service are referred to as Virtual Network 
Functions (VNFs). RO can be considered as a component encompassing 
orchestration related tasks, and in ETSI’s architecture it appears both in 
the Virtual Infrastructure Manager (VIM) and in the NFV Orchestrator 
(NFVO). In general, RO assigns VNFs composing the service to compute 
resources and also allocates paths between connected VNFs. 

A novel RO (or a hierarchy of ROs) which can efficiently manage 
underlying resources in edge cloud or mobile edge computing environ
ments is an inevitable future component with challenging tasks. It must 
be able to jointly handle compute and network resources in a tightly 
integrated framework and it must be aware of network characteristics 
besides computing capabilities. Furthermore, the requested network 
services have to be created on-the-fly within seconds. It is challenging as 
even the problem of Virtual Network Embedding (VNE) is known to be 
𝒩℘-hard (Rost and Schmid, 2020) which addresses only the mapping of 
network elements. Two different design approaches can be applied to 
achieve such features. On the one hand, the VIM itself can be extended 
with network-awareness and with the detailed view on network re
sources. This feature is typically not available in today’s VIMs. With such 
an upgrade, the additional NFVO becomes unnecessary for 
single-provider setups where resources belong to the same operator, and 
by these means, the orchestration and deployment time can be reduced 
significantly. Apparently, this approach can be feasible only for smaller 
systems encompassing a limited number of resource pools due to scal
ability issues. On the other hand, on top of VIMs and network control
lers, a higher level orchestrator, i.e., the NFVO, can be added which is 
able to combine/integrate different resource domains. This solution 
results in a hierarchy of ROs and the cooperation of VIMs and NFVO 
yielding larger deployment time and the need for strictly defined 
external APIs. However, multi-provider scenarios require this approach 
(Gerő et al., 2017; Vaishnavi et al., 2018), and it yields a scalable so
lution for larger networks. 

In this paper, we propose fully-fledged solutions for both approaches 
and evaluate their performance characteristics. As today’s most widely 
deployed open-source VIM is OpenStack, we target that platform. As a 
first solution, we propose and implement a novel extension to OpenStack 
which makes it a network-aware resource orchestrator. As a result, a 
single OpenStack system will be in charge of controlling both the cloud 
and edge resources and the VNFs are implemented as virtual machines 
(VMs). For more complex multi-provider scenarios, we propose a multi- 
layer orchestration system where cloud resources are managed by 
OpenStack while edge resources are under the control of Docker. This 
requires Docker engines to be installed on edge servers. We assume that 
at the edge of the system limited amount of compute resources are 
available, therefore to reduce the virtualization overhead in our multi- 
provider scenarios we opt for using light-weight software containers 
instead of virtual machines. Both VIMs (OpenStack and Docker) are 
extended with a common resource control API and a multi-domain 
NFVO is added on top. We assume that each VNF can be run as a VM 
or as a container and the NFVO selects the preferred deployment option 
on-the-fly. 

Our contribution is threefold. First, we define the two architecture 
proposals, highlight the main benefits and the limitations. We also 
provide online embedding algorithms together with information models 
adjusted to the architectures, respectively. These algorithms are the key 
components of the orchestration systems significantly affecting the 
overall performance. Second, we implement proof-of-concept pro
totypes capturing the relevant parts of the proposed systems. And 
finally, we evaluate the concepts via large-scale simulations and real 

experiments to reveal the scalability characteristics of both approaches. 
In order to enable realistic experiments with both prototypes, we set up 
two dedicated, fully operational testbed environments including multi
ple blade servers and the whole software stacks. The results confirm that 
the simple VIM extension can be a valid option for single-provider setups 
up to 100 edge Points of Presence (PoPs) and serving a few hundreds of 
customers, whereas our multi-layer orchestration system shows better 
scaling characteristics in terms of the number of clients and in the 
network size. More exactly, our mapping algorithm supports thousands 
of users and hundreds of edge PoPs, while its operation overhead is 
minimal, compared to a de facto standard system which cannot handle 
latency constraints. 

The rest of the paper is organized as follows. In Sec. 2, we highlight 
an envisioned service as an illustration. Sec. 3 is devoted to the archi
tecture proposals and the corresponding resource orchestration algo
rithms. Sec. 4 describes our proof-of-concept prototypes. In Sec. 5, we 
present our main results with the two implemented prototypes and 
reveal the main performance characteristics. In Sec. 6, a summary of the 
related work is given while Sec. 7 draws the conclusion. 

2. An illustrative use-case 

We chose an automotive use case in order to illustrate the power of 
the edge cloud computing concept: an alerting system that raises 
drivers’ attention to road dangers ahead. Although this type of service 
already exists,2 its implementation as a novel IoT application in a 
distributed system offers improved capabilities to the existing ones’. The 
advancement stems from the round-trip delay saving, i.e., faster alerts to 
drivers, provided by the local edge instead of the remote central cloud 
computing infrastructure. 

The schematic description of the envisioned IoT application is 
depicted in Fig. 1. The service is composed of multiple components. The 
Object recognition (OREC) function instances process images and video 
streams uploaded from cars that are being driven by customers/clients 
of the application provider, connected to wireless access networks, e.g., 
4G mobile service. The OREC instances are deployed at the edge of the 
network as close to the cars as possible in order to ensure the lowest 
latency until object recognition. Hazardous objects that these functions 
look for in the input data can be wild animals crossing the road, storm 
destructed trees laying across the asphalt, or biker in the city, kids 
around the school, etc. OREC instances process all upload streams and 
feed instant alerts back to the respective drives if necessary. Prediction 
engines (PRED) are deployed possibly co-hosted with OREC instances in 

Fig. 1. The actors and components of the distributed road danger alert
ing system. 

1 European Telecommunications Standards Institute (ETSI), https://www.et 
si.org/. 2 https://www.here.com/products/automotive/hazard-warnings. 
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order to forecast imminent and short-term dangers based on the recog
nized hazardous situation, e.g., animals approaching the road. Both 
components can emit alerts to the drivers in case their own car or the 
cars ahead uploaded visual data that were flagged as an instant or 
imminent danger situation. The alert messages are displayed to the 
driver or even trigger automatic emergency braking if needed. Alerts can 
also be sent to those customers who do not provide video uploads to the 
system due to lack of integrated or dash cams. 

Similarly to centralized existing services, the system comprises 
aggregating (AGGR) and statistical (STAT) function components in data 
centers. As their delay requirements are not considered critical, these 
functions are better not to be placed on scarce edge resources. The AGGR 
instances correlate and aggregate the events reported by the OREC and 
PRED functions scattered in the edge infrastructure. The function can be 
scaled according to the actual demand. For overall statistics and the 
continuous learning of the recognition and prediction features, the 
centralized STAT components collect all important data from the system 
and send the training data back to OREC and PRED functions. 

Note that all types of components can be dynamically stopped, 
started, migrated across the whole infrastructure as needed. Migration 
of functions might be required for stateful PRED components as those 
must follow drivers on their tracks. In Fig. 1 we depict with dashed 
bubbles the edge domains (EDGE) and the data center (CLOUD). 
Furthermore, by exploiting the possibilities of the edge computing 
concept, the edge-deployed PREDs can provide inputs directly among 
themselves, e.g., predicting hazardous situations for cars. Therefore the 
inputs can be handled and being processed by other edge domains, 
following the car based on whose video feed a danger had been detected. 

3. Proposed architectures and algorithms 

In order to enable future services with strict latency bounds, such as 
the envisioned example shown in Sec. 2, geographically distributed re
sources have to be managed and controlled carefully in an integrated 
system. Resource orchestration in distributed cloud environments is a 
challenging task and novel algorithms, workflows and architectures are 
needed to meet application level requirements. Here, we present two 
architecture proposals with different capabilities together with the key 
algorithms responsible for resource orchestration. 

3.1. DARK: extended VIM for a single provider 

The first and simpler architecture option is to extend a VIM in order 
to support edge cloud infrastructures. Today’s VIMs typically designed 
for data center environments where the resources (compute, storage, 
network) are placed close to each other in a central premises and the 
well-designed network topology provides extreme bisection bandwidth. 
To put it simply, we have zero delay and infinite throughput between the 
VMs. Thus, widely used scheduler algorithms do not take the network 
characteristics into consideration. In this section, we propose a novel 
orchestration algorithm, called DARK, that aims to cope with the new 
challenges of distributed cloud architectures where delays cannot be 
ignored. It provides a general extension to traditional VIMs by adding 
“network-awareness” to the resource orchestration process. The basic 
version of the algorithm was described in Haja et al. (2018). Here, we 
introduce the resource model including network topologies, the service 
model and summarize the main steps of our heuristics. 

3.1.1. Resource and service models 
Our network model for a three-tier edge computing architecture 

consists of a given number of edge clusters and central clouds connected 
via the core network as it is shown in the example in Fig. 2. In DARK, the 
physical architecture is represented as a graph called resource graph 
(RG). Each edge cluster contains a pre-defined number of servers with 
given computing capabilities (CPU, RAM and storage) and two gateway 
nodes. Each of the clusters has a SAP (Service Access Point) attached to it 

via the SAP-Gateway. The SAP works as a connection point to the 
network. The end devices can consume the remote resources through 
this interface (e.g., a mobile base station). We assume that edge clusters, 
including their servers, have preconfigured, in typical scenarios, limited, 
computational resources (from one single server to a few number of rack 
cabinets) that we consider during the deployment of services. Within a 
cluster, the nodes are connected in a full mesh topology. The edge 
clusters and the cloud data centers are connected to each other via the 
core network. Each link in our graph is weighted with the latency and 
bandwidth value corresponding to the physical connection characteris
tics. A topology may contain any number of cloud domains that are 
owned either by the service provider or another operator (e.g., Amazon). 
We assume that cloud data centers have much more compute, storage 
and memory capacity, than the edge clusters. In cases, when other op
erator’s resources are considered the service provider has to pay a fee for 
consumed resources according to a cost model. However, in this archi
tecture option, we assume a single provider using only her own 
resources. 

Our novel orchestration algorithm takes a set of Service Function 
Chains (SFC) as its input. More complex services are generally described 
by abstract Service Graphs (SG) encompassing multiple chains. This 
representation can easily be transformed into a set of SFCs. An example 
transformation and our processed inputs are shown in Fig. 3 as an 
illustration. Each SFC contains a SAP as its starting point and numerous 
Virtual Network Functions (VNFs) realize the computational tasks in the 
service. In Fig. 3, each color represents different instances of a given VNF 
type. We consider the edges between the virtual nodes as bidirectional 
virtual links, which may have bandwidth and delay requirements. The 
delay requirements define the maximum tolerated latency between the 
two nodes and the given bandwidth requirement specifies the minimum 
throughput for the virtual link. 

Fig. 2. DARK’s resource model.  

Fig. 3. DARK’s service model (set of chains).  
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3.1.2. Mapping algorithm 
The key component of DARK is our online mapping algorithm which 

maps the incoming service requests, given as service graphs, to the 
resource graph, describing the current state of the infrastructure and the 
already deployed services. Our greedy, heuristic solution processes SFCs 
starting from a SAP, moves forward on the virtual links toward con
nected VNFs and deploys the virtual entities on the physical system step- 
by-step. The pseudo-code of our algorithm is provided in Alg. 1. An 
important feature of our approach is the ability of VNF migration: 
moving a given set of already deployed network functions to the cloud or 
to other edge clusters if necessary. By these means, resources in given 
edge domains can be released in order to admit more services with strict 
latency constraints. 

Algorithm 1 
Service graph mapping to resource graph.  

1: procedure MAP(SG, RG, migratable_vnfs) 
2: running ←copy(RG) 
3: mapped_vnodes ←∅ 
4: map_list ←ORDERSUBCHAINS(SG) 
5: mapped_vnodes.insert(SG.saps.first) 
6: rollback_level = 0 
7: for all (u, v, link) ∈map_list do 
8: if u ∈mapped_vnodes and v ∈mapped_vnodes then 
9: success ← MAPVIRTUALLINK(link) 
10: else if u ∕∈ SG.saps then 
11: success ← MAPVNF(u, v, link) 
12: else ⊳ This means actual_element is a SAP 
13: success ← MAPVLINK2SAP(u, v, link) 
14: end if 
15: if ¬success and rb_level ≥ max_rb then 
16: success ← MIGRATING(migratable_vnfs, u, v) 
17: else 
18: success ← ROLLBACK(u, v, link) 
19: rollback_level + = 1 
20: end if 
21: if success then 
22: mapped_vnodes.insert(v) 
23: end if 
24: end fordone 
25: end procedure  

The MAP function receives three parameters: the actual service 
request represented as a service graph (SG), the physical architecture as 
a resource graph (RG) and a list called migratable_vnfs that contains 
previously deployed VNFs, which might be migrated to other physical 
hosts. After initialization, in the first step of our algorithm, we determine 
the order of execution, which can have a significant impact on the final 
result of the greedy algorithm. Since our mapping process begins at a 
SAP and moves forward on the virtual links, a key requirement of 
mapping VNFs is that we need to be able to determine the reference 
nodes in the system, from where we have to fulfill the defined network 
requirements in the SFC. According to this, we have to split the incoming 
service request into a sequence of subchains, where each subchain holds 
the following elements: i) a VNF that is already processed or a SAP; ii) 
another virtual node to be examined; iii) a virtual link that connects the 
previous two nodes and defines the network requirements between 
them. According to our intuition, the deployment of VNFs connected 
with virtual links defining tighter latency bounds is more complicated 
and we have fewer options for hosting them. Therefore, we want to sort 
the previously described subchains based on the strictness of their delay 
requirements, but keeping in mind that at least one node in the subchain 
must have been mapped before, when our mapping algorithm reaches 
that subchain during its execution. The ORDERSUBCHAINS method is 
responsible for this ordering. More specifically, it splits the incoming 
service request into a list of triplets (subchain) containing the links and 
their connected nodes (u,v), i.e., the VNFs. 

The next step is the mapping of the service request to the underlying 

physical infrastructure. The MAP method iterates trough the previously 
ordered list of triplets. During the mapping we refer to the elements of 
each triplet as: previous element, actual element and virtual link. The 
steps of processing a triplet are presented by the flowchart shown in 
Fig. 4. Depending on the status of the nodes connected by the virtual 
link, three different cases are possible. 

Mapping virtual link between VNFs: If both ends have already been 
allocated to a computing resource previously, then only a suitable path 
for the virtual edge needs to be found. The MAPVIRTUALLINK method 
will find this path if it exists. If both of the virtual elements are in the 
same cluster, we are done, since we assume that there is no network 
bottleneck inside a cluster. Anyway, with Dijkstra’s algorithm we 
determine the shortest path, in terms of network latency, between the 
hosts in the physical topology. If the found path’s latency is lower than 
the required, and all the links of the path have enough available band
width for hosting the new virtual link, then we can map the requested 
virtual link in the topology. This method can be reviewed on the right 
side of Fig. 4. 

Mapping VNF: If the actual element is a VNF and it is not deployed 
yet, the MAPVNF function will map it to the underlying system. The core 
steps of MAPVNF is presented in the middle branch of the flowchart. 
First, it filters the available physical nodes based on their computing 
resources, and after that it checks if the candidate is reachable from the 
previous node via any sequence of edges. If the path does not satisfy the 
latency requirement, or any of the edges do not have enough bandwidth, 
then that physical node is removed from the list of candidates. When the 
list of compatible physical nodes is available, they will be sorted based 
on the resource cost of hosting the actual VNF. After the host node is 
determined, the link can also be mapped by applying the previously seen 
method (MAPVIRTUALLINK). 

Mapping virtual link between VNF and SAP: In that case, when the 
actual element is a SAP, then the algorithm calculates the path – starting 
from the previously mapped VNF (previous element) – with the lowest 
latency, where the required bandwidth is available on all edges. If the 
path fulfills the latency requirement, the virtual links are mapped to the 

Fig. 4. Flowchart of DARK’s mapping algorithm.  
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corresponding physical links. This MAPVLINK2SAP method works 
similarly as MAPVIRTUALLINK and presented on the left side of Fig. 4. 

Rollbacking: It may occur that during the mapping of a given service 
chain, one of the above steps fails, which is noted with the “Fail” circle in 
the flowchart of Fig. 4. For example, none of the nodes have enough 
resources to host a given VNF, or the network-related requirements 
cannot be met. In that case, the algorithm tries to step back to a previous 
state. This step is performed by the ROLLBACK method. By setting the 
max_rollback constant to an appropriate value, the service provider can 
limit the number of rollback steps in order to ensure an acceptable 
runtime. In each step of the ROLLBACK method, we restore a state that 
was previously achieved, modify that state, then continue the mapping 
from that modified status. In practice, let us consider that we cannot 
deploy the actual element due to some reasons. We call the ROLLBACK 
method that examines the suitable nodes for the previous element and 
chooses a different one than the MAPVNF chose previously. We consider 
this state modification as one rollback step. If we still cannot map the 
actual element, then we choose another physical node from the suitable 
nodes of the previous element. In that case, when we tried all the suit
able nodes for the previous element, the ROLLBACK takes another step 
back in the SFC. By these means, we try to relocate each previous VNF in 
the SG beginning from the previous element – in the current triplet – to 
the very first VNF of the service, until we can successfully deploy the 
actual VNF or the amount of ROLLBACK steps reaches the max_rollback 
limit. If the number of rollbacks exceeds the max_rollback limit, then the 
algorithm tries to migrate one or more already mapped VNFs to another 
cluster or even to the cloud, thus freeing up resources in the edge cluster. 
It is worth noting that our algorithm does not deploy service components 
separately, thus either all components of a service request are success
fully deployed or the request is rejected. 

3.1.3. Migrating VNFs 
A central and novel feature of the DARK algorithm is the support of 

VNF migration. This process is essential to enable dynamic operations 
and adaptability to varying workload or changing environment (e.g., 
moving car). According to our resource model, two migration directions 
may occur: i) from edge server to the cloud and ii) from edge server to 
edge server. On the one hand, the goal of the former is usually cost 
optimization. On the other hand, the latter is essential for fast adapta
tion, but it also increases the chance of successful deployment of a VNF 
into the edge server. In our algorithm, MIGRATING method attempts to 
migrate a previously deployed VNF from the given server in order to free 
up enough computation resources for the newly arrived VNF to deploy. 
Its workflow can be described in three phases: i) detecting the list of 
possible VNFs to migrate, and collecting where they could be relocated, 
ii) on the temporary resource model executing the migration and iii) 
checking whether the migration violates the network requirements of 
the migrated VNF. 

Being central to our concept, we discuss our MIGRATING method in 
more detail and it is described as a pseudo-code in Alg. 2. 

It returns true or false depending on the migration was successful or 
not. The three input arguments consist of the (migratable_vnfs) previously 
mentioned list in Alg. 1 of non-delay-sensitive network functions, (u) the 
actual VNF to be deployed and (v) the previous VNF in the service 
function chain connected to u. Please note that the VNF v is already 
handled by the embedding algorithm, so it is deployed to a physical node 
of the computing system. 

The migration procedure could be summarized in the following three 
phases. First (lines 2–7), it iterates through the list containing migrat
able functions (i.e., non-delay-sensitive VNFs) and checks the compute 
constraints using ISLARGER method in lines 3 and 4. The ISLARGER 
method returns true if the consumed compute resources (CPU, RAM, and 
storage) of the migratable VNF are larger than the required by u. In this 
case, VNF u could be placed into the physical node instead of the 
migratable VNF. In the line 6, the GETCOMPNODES method returns the 
list of possible nodes where the migratable VNF could be migrated to. 

The second phase of the MIGRATING method (lines 8–12) iterates 
through these possible physical nodes and attempts to execute the 
migration process. If the method did not reach the maximum number of 
migration tries (line 9), it makes the backup resource and service graphs 
(lines 10–11) describing the current status of the computing system, and 
executes the migration process by the TRYMIGRATE method (line 12). 
This method, first, removes the migratable VNF from the original 
physical node, places it into the possible target node, and reconfigures 
the connected virtual links to use another physical link path between the 
VNFs. Furthermore, the method also maps the actual VNF u to the server 
from where the migratable one was moved, and determines the physical 
links to implement the virtual link between the u and v. So far, only the 
compute constraints of the VNFs have been checked, however, the 
network requirements may fail during the mapping. 

The third phase of the migration procedure (lines 13–19) is to check 
whether the migration was successful. If the physical links fulfill the 
corresponding virtual link’s network requirements, then the TRYMI
GRATE method returns true, thus the procedure of migrating was suc
cessful (line 13). Otherwise, RESETRG and RESETSGS restore the 
previous state of the resource/service graphs (lines 16–17), and 
continue with the next migration option from the list. Instead of 
checking all the possible migration options (migratable VNFs and 
possible physical nodes), in order to control the runtime, we test only a 
limited number of options. This iteration number can be controlled by 
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defining the value of max_try and max_vnf environment values. The 
computational complexity of the algorithm is polynomial (details in 
Haja et al. (2018)). 

In summary, the key innovation in DARK is the network-aware 
migration process that can migrate already deployed VNFs in order to 
make room for other services if it is possible. Our solution is able to 
migrate the VNFs either between two edge servers (that can be in the 
same or different clusters) or from edge server to the cloud. Naturally, 
this migration process takes all network requirements into account and 
the migration is triggered if and only if each requirement is met in the 
resulted state. In order to ensure the correctness of the DARK mapping, 
we use admission control: the elements of the SFC are deployed to the 
OpenStack servers if and only if the hosts contain enough computation 
(CPU, memory, storage) resource to store the VNFs and the network 
among the hosts fulfills network requirements (bandwidth and latency) 
which are defined between VNFs of the service. The admission control is 
ensured in every case, even when DARK migrates VNFs between 
clusters. 

3.2. MORCH: orchestration for multi-layer architecture 

Our second architecture proposal introduces an upper-level NFVO on 
top of VIMs. This is an adoption of our general orchestration system 
proposed for 5G networks (Vaishnavi et al., 2018; EU H2020 5G Ex
change project) which supports arbitrary orchestration hierarchies 
where the orchestrators can control what to expose towards upper-layer 
NFVOs. We make use of the main elements related to resource orches
tration and adjust them to edge cloud infrastructures and the re
quirements of future IoT applications. This approach is suitable for 
multi-provider scenarios. We note that the algorithms are described in 
our previous works (Németh et al., 2016; Sonkoly et al., 2018), however, 
it is important to inspect them as part of the overall system, as they 
might cause bottlenecks and crucially affect the performance. Therefore, 
here we focus on their integration into the architecture, address the 
algorithmic challenges of such adaptation, and highlight the key fea
tures required by the multi-provider operation. Consequently, we pre
sent the automated resolution of end-to-end constraints, domain-error 
handling based on a distributed backtracking mechanism and the 
inherent support of information hiding and resource aggregation. 

3.2.1. Proposed architecture 
The proposed architecture is shown in Fig. 5. Each edge domain or a 

cluster of edge domains is/are under the control of a dedicated VIM. On 
top of VIMs, a common northbound API is added which role is twofold. 
First, it exposes a bottom-up resource view including compute, memory 

and storage capacity and a simplified network model. The abstract 
network model (big switch) describes ingress/egress link characteristics 
in terms of delay and bandwidth, and provides aggregated information 
on the internal network, i.e., path characteristics among ports (A similar 
model is presented in Sonkoly et al. (2015)). Second, the top-down 
resource control is also realized via this interface where the service re
quests as service function chains with latency and bandwidth constraints 
can be defined. 

NFVO is responsible for integrating the underlying edge domains as 
well as the cloud resources. Central cloud or clouds is/are also controlled 
by dedicated VIM(s) with the previous API extension. The service re
quests received at the northbound API of the NFVO (same as the VIMs’ 
API in our proposal), are mapped to underlying resource domains and 
decomposed accordingly. The “sub-service” requests are sent then to the 
involved edge or cloud orchestrators using the recurring resource con
trol API. 

3.2.2. Highlights of the key algorithms 
The basic idea of our second orchestration algorithm for multi-layer 

scenarios (MORCH) is similar to the one explained earlier in Sec. 3.1 
disregarding the inherent VNF migration capabilities. Multi-layer VNF 
migration can be achieved by re-running the MORCH algorithm when a 
dedicated monitoring system triggers it, which could result in relocating 
previously deployed VNFs. Our multi-layer orchestrator engine uses a 
graph-based, heuristic-guided greedy backtracking search on the 
resource graph structure. In our earlier work, we have presented the 
details of the algorithm (Németh et al., 2016; Sonkoly et al., 2018) and 
its good scaling properties, now we show how it has been adapted to 
create our multi-layer orchestration system. MORCH operates on the 
abstraction level of the substrate topology infrastructure which is shown 
by the underlying VIMs and their interconnections. 

An elementary embedding step of MORCH is the greedy mapping of a 
VNF and an adjacent service graph link onto a hosting (abstract) big 
switch node (shown by the VIMs, respectively) and onto a path con
sisting of VIM connections. After each successful greedy step, the algo
rithm’s data structures representing the currently available substrate 
resources are updated. In case such a greedy step is not able to find a 
suitable hosting option, MORCH performs backtracking similarly to 
DARK. The orchestration engine provides an embedding solution when 
all elements of the service graph have been successfully mapped 
respecting each aspect of the requirements or refuses the request. 

Our MORCH algorithm is parameterizable both in terms of search 
space size and search behavior. The former can be tuned by the back
tracking parameters (i) defining how many hosting alternatives of an 
elementary step shall be stored (branching factor), and (ii) how many 
consecutive greedy steps can be undone in the search tree (backtracking 
depth). Search behavior is controlled by several parameters of the 
preference function defining the heuristic. At each greedy step, the most 
preferred substrate node and path are chosen as the host of the currently 
considered VNF and its adjacent service graph link. 

Due to the hidden information shown by the abstract big switch 
nodes of the VIM layer, it is possible that a selected embedding solution 
on the abstract view of an upper layer turns out to be impossible to map 
on a VIM’s full infrastructure view. In this case, MORCH and the domain 
orchestrators communicate this failure to the appropriate domains, 
which undo the failed service instantiation. A subset of the underlying 
domains might have successfully mapped their part of the segmented 
service graph, in case of a failure, these instantiations must be undone. 
Our algorithm supports this scenario efficiently: if a lower abstraction 
layer failure notification arrives, the greedy backtracking search of 
MORCH continues from the latest solution, eliminating the need to start 
the whole orchestration process from scratch. 

In addition to basic service graph requirements, such as node and 
link capacities, VNF type constraints and link-wise delay requirements, 
MORCH supports end-to-end delay constraints on service graph paths 
between SAPs. An end-to-end path is shown in Fig. 5 on service graph 

Fig. 5. Proposed multi-layer orchestration system for edge cloud 
infrastructures. 
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links 1, 2 and 5. If such an end-to-end requirement is given for orches
tration over an abstract resource view, a delay budget is allocated 
(respecting the overall end-to-end requirement) for all affected abstract 
VIM nodes, whose orchestrators over lower level resource abstractions 
receive this delay budget as input end-to-end requirements between 
their inter-domain endpoints (SAPs). See the input service graph seg
ments for Edge VIM1 and Cloud VIM5 in Fig. 5 on their respective ser
vice graph segments. This approach provides the multi-layer support of 
guaranteed end-to-end path delays over a unified abstract interface. 

4. Proof of concept prototypes 

We have implemented both architecture options as proof-of-concept 
prototypes. The main components and relevant implementation details 
are summarized in this section. 

4.1. Extended OpenStack 

As today’s one of the most widely deployed open-source VIM is 
OpenStack, we target that platform. Making use of the previously pre
sented DARK algorithm (see Sec. 3.1), we extend OpenStack’s scheduler 
algorithm to turn it into a network-aware resource orchestrator. The key 
features of this approach are also demonstrated in Szalay et al. (2019). In 
addition, the code has been released as open-source (DARK). 

On the one hand, OpenStack is a cloud computing platform, used as 
the operating system of both private and public clouds. It provides 
Infrastructure as a Service (IaaS) and it is responsible for the manage
ment of large pools of compute, storage and networking resources. Many 
loosely coupled components are developed as independent projects 
where the components are communicating with each other through 
well-defined REST APIs (Logical architecture of Openstack). On the 
other hand, our DARK algorithm maps service function chains to an 
internal topology, which defines the exact resources where the virtual 
service components should be executed. As a proof-of-concept, we 
replace the default nova-scheduler of OpenStack with our own algorithm 
in order to support network-aware VNF placement. This prototype is 
also able to run automated measurements to determine physical 
network characteristics. In this section, the key elements and imple
mentation challenges are described. 

An example setup is shown in Fig. 6. All compute nodes are 
controlled by the same OpenStack controller. DARK creates an abstract 
model of the physical infrastructure, which contains a delay matrix and 
a resource graph. The delay matrix defines delay between all node pairs. 
The resource graph includes all infrastructure components, i.e., nodes, 
links, clusters. The orchestrator algorithm maintains this abstract model 
and processes the incoming service requests. 

4.1.1. Network status measurement 
Since currently OpenStack does not provide any network related 

metrics, it cannot take them into account during the orchestration pro
cess. To solve this problem, we implemented a measurement method 
which is conform with our previously introduced network model. Our 

tool is based on VMTP (VMTP) which is a data path performance mea
surement module for OpenStack. It performs automatic measurements 
between the different virtual networks, but can also be used to bench
mark native hosts. It connects to the given nodes via SSH, executes the 
measurements by using the selected protocols (TCP, UDP, ICMP), then 
returns the result to the management server. 

Each OpenStack compute host in our reference cloud is configured to 
belong to one custom Availability Zone. An Availability Zone may 
represent an edge cluster or a cloud according to our terminology. As we 
assume the servers located in the same cluster are deployed physically 
close to each other (e.g., in the same rack), it is enough to measure the 
latency and bandwidth values between 1 and 1 randomly selected 
servers in each zone. By applying this method we can construct the delay 
and bandwidth matrices that describe the parameters of the underlying 
physical network. 

Furthermore, through the OpenStack API we also collect the avail
able compute node resources (CPU, RAM, storage) from each hyper
visor. From the gathered information, we can build up the resource 
graph that contains compute resources extended with the networking 
related features. 

4.1.2. OpenStack scheduler algorithm and modifications 
OpenStack’s physical resource orchestrator component is Nova. It 

uses its own filter scheduler for filtering and weighting in order to make 
informed decisions where a new instance should be created. During the 
VM placement nova-scheduler iterates over all compute nodes, evaluates 
each of them against a set of filters. The list of resulting host is sorted by 
the administrator-defined weights. This default filtering operation 
cannot deploy our virtual services properly because there is no standard 
filter class that tackles the network resources (delay, bandwidth) be
tween infrastructure nodes. Although with Nova API it is possible to 
deploy a VM on a manually specified host. In our prototype, we use this 
feature for deploying the VNFs on the host given by our resource 
orchestrator algorithm. 

The next step in the prototype’s workflow is ensuring correct traffic 
steering. OpenStack officially supports service chaining since its release 
Pike, i.e., DARK can be applied since 2017. Network traffic steering with 
Neutron port chains is provided by the networking-sfc (OpenStack Ser
vice Function Chaining) module. Our code can use Neutron API to create 
an ingress and an egress port for each VM. These ports are grouped into 
port pairs by the owner VM. The port pairs are grouped into Neutron 
port pair groups by the virtual link connections. A port chain consists of 
a set of Neutron port pair groups to define the sequence of service 
functions. These Neutron objects make it possible to deploy our traffic 
steering model for service chaining that uses only Neutron ports. 

4.1.3. Scheduling SFCs with OpenStack Heat 
Heat service is the main orchestration service in OpenStack. It im

plements an upper layer engine to launch multiple virtual resources 
based on templates in the form of text files. In a Heat Orchestration 
Template one can easily define resources to be deployed. Templates may 
also describe the relationships between resources, e.g., which port is 
connected to which instance. This enables Heat to call the proper 
OpenStack service APIs to create all resources in the correct order to 
launch an application. 

Besides the direct Nova and Neutron API calls, DARK is able to use 
Heat API. We convert our SFCs into Heat templates where each 
component in the chain is defined as Heat resource such as instance, 
port-pair, port-pair-group, port-chain. In that case if a VNF instance is 
already present in OpenStack, DARK does not deploy the instance again, 
it invokes the instance with its id in the template. 

4.1.4. Challenges and limitations of OpenStack 
One of the limitations of OpenStack stems from the heavy-weight 

virtualization technique used when VNFs are implemented as VMs. 
Our single provider setups based on DARK use OpenStack to manage Fig. 6. Orchestrating OpenStack resources with DARK.  
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VNFs as VMs in both edge clusters and in cloud data centers. Therefore, 
the deployment time of the services and VNF startup times are expected 
to be much larger compared to other scenarios using software con
tainers. However, virtual machines can provide better isolation among 
the tenants. 

If the latency is too high between the controller and the compute 
nodes, then the controller cannot execute the commands properly on 
compute nodes. We conducted several experiments with emulated delay 
between the nodes in order to reveal the performance characteristics in 
such scenarios. The experiments confirmed that OpenStack compute 
service is able to work in distributed environments when we have non- 
negligible delays among the nodes. We could successfully deploy VMs in 
extreme scenarios where the latency between the controller and the 
compute node was 10 s. Of course, the spawning method, i.e., starting 
VM into active state, took a few minutes. 

Our orchestrator algorithm in DARK considers the possibility of 
migrating VNFs between compute nodes. Therefore, we implemented 
the migration API calls in our prototype code. Migrating VMs between 
compute nodes is not trivial if there are different types of CPUs in the 
compute nodes. In order to ensure that migration works correctly, we 
have to make some slight modifications in Nova’s configuration files to 
solve the issue. For instance, we set virtualization type to Qemu instead 
of KVM on all compute servers. Note that to the best of our knowledge, 
there are no solutions to live migrate VMs between different OpenStack 
clouds, another important reason for federating computing clouds and 
edge clusters under one common VIM. Furthermore, as only one 
controller is needed in this case, our proposed setup does not take 
hardware resources from the compute nodes in the edge domains with 
limited capacity. 

4.2. Multi-layer orchestration system 

In Vaishnavi et al. (2018) and EU H2020 5G Exchange project, we 
proposed a general purpose multi-domain orchestration system for 
future 5G networks. Here, we adopt the main elements related to 
resource orchestration and adjust those to IoT applications and edge 
cloud infrastructures. 

4.2.1. Multi-domain resource orchestrator 
Our Resource Orchestrator (RO) encompasses and coordinates mul

tiple components as it is shown in Fig. 7a. In general, it is responsible for 
exposing different virtual resource views upwards and satisfying service 
deployment requests. The requests are expressed on the high-level vir
tual views (Resource Slices) and mapped onto the full domain view 
which encompasses the underlying resources and topologies. In Fig. 7a, 
green boxes correspond to resource views, while red boxes indicate 
orchestration or control related elements. During the orchestration 
workflow, RO engine invokes the embedding algorithm module, 
MORCH, which performs the mapping of the service requests to the 
available resources according to the configured policies. The result 
describing the full deployment is then sent to the Technology Adaptation 
component. It provides a domain-agnostic resource abstraction and 
virtualization for different resources, technologies or administrative 
domains. The recurring resource control interface is denoted by I-RC, 
which is built on the information model presented in Sec. 4.2.2. As we 
use the same interface at north and south, a recursive orchestration hi
erarchy can be constructed. The underlying entity can be either a 
domain orchestrator or another multi-domain orchestrator aggregating 
different domains. 

Slicer is an integrated part of the RO and its role is threefold: i) it 
introduces multi-tenancy by configurable northbound views corre
sponding to consumers; ii) it enforces policies with regards to slice to 
resource mapping, e.g., if a consumer is limited to a pool of domain 
resources, then these attributes are set before calling the embedding 
function; iii) it enforces operational policies with respect to consumer-to- 
consumer sharing of service instances. 

We have implemented our embedding algorithm, MORCH, with all 
of its features which are presented in Sec. 3.2. MORCH works on the 
abstract resource view, which is gathered from the underlying orches
trators and constructed on-the-fly (For example, in Fig. 5, NFVO con
structs the abstract resource model based on the information gathered 
from e.g., Edge VIM1 and Cloud VIM5). In case a failure occurs in the 
orchestration procedure on any abstraction layer, the embedding algo
rithm supports the framework by finding an alternative solution on its 
resource view respecting all of the original service requirements. This 
trial-and-error mechanism concludes by receiving and propagating 
positive service embedding results from the lowest (physical) layer 
orchestrators. 

4.2.2. Information model and the resource control API 
Our information model is a central element which is used at the 

recurring resource control interfaces (I-RC). This model enables the 
multi-layer (and recursive) operation by abstracting both i) the bottom- 
up network of compute resources and function capabilities, and ii) the 
top-down view of control over the virtualized infrastructure. From 
general aspects, our model is similar to ETSI’s NFV MANO data models 
(Network Functions Virtualisation, 2014), however, it extends that in 
multiple ways in order to enable multi-operator scenarios. For example, 
our model supports the abstraction of an arbitrary topology of resources 
and capabilities, in addition, we introduced the notion of typed VNFs, 
and our model allows full recursion, i.e., the northbound and south
bound representations are the same for resource orchestrator 
components. 

We designed an object-oriented information model, a simplified 

Fig. 7. Software architecture and information model of our proof-of-concept 
multi-domain orchestrator. 
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version of which is shown in Fig. 7b. On the one hand, the model is 
capable of describing an arbitrary topology of resources and capabilities. 
This information corresponds to the resource view exposed by an 
orchestrator towards an upper level entity. On the other hand, services 
(more specifically, service function chains) can be formed as allocation 
requests defined on the given (northbound) resource view. The task of 
service embedding in any given layer is analogous to match the resource 
requests from the northbound topology to the southbound topology of 
resources and capabilities. 

A node represents either an abstraction of node resources and capa
bilities or a VNF allocated on a node. The former type of nodes is referred 
to as Big Switch with Big Software (BiS-BiS). Node objects have ports 
representing connection points; links connecting ports of different nodes 
define abstracted physical interconnection; links interconnecting ports 
of the same node, i.e., internal links, capture the aggregation for a to
pology, e.g., if a domain of 10 MPLS switches are aggregated into a 
single node, then the external ports of the MPLS domain will appear in 
the abstract node with internal links that characterize the edge-to-edge 
LSPs, like latency, bandwidth, QoS class, etc. In order to allow for
warding control for nodes, flow entries can be defined: we use port - 
match - action sets following the SDN design principle, but we support 
various technology specific mappings, as well. The flow rules may 
include i) matching of input port, abstract tags or other technology 
specific header fields, ii) actions such as output to port, push/pop ab
stract tags or any other technology specific packet manipulation. Basic 
life-cycle management operations are contained in the status field of 
each node, such as create, start, stop, and pause. BiS-BiS nodes can be 
connected to each other representing direct or logical connectivity be
tween the corresponding ports. Service Access Points (SAPs) represent 
external connections where customers can be attached to the system. 

4.2.3. OpenStack Domain Orchestrator 
In order to evaluate our concept in realistic scenarios, the adaption to 

today’s VIMs is crucial. We have developed a dedicated library released 
as open-source (UNIFY virtualizer library) supporting the implementa
tion of I-RC interface onto different VIMs. 

As OpenStack is the most widely used open-source cloud “operating 
system”, we integrated it in our framework. In Fig. 8, two OpenStack 
Domain Orchestrators (ODO) are shown with their main components 
and their managed OpenStack environments. ODO exposes a north
bound interface, which is used to interact with upper layer orchestrators 
following the information model presented in Sec. 4.2.2. The resource 
orchestrator module parses the given configuration files, maintains the 
current topology and the database of supported VNFs. The adapter li
brary provides the necessary modules and helper functions. ODO man
ages OpenStack via its REST API. 

ODO currently supports two operation modes. Fig. 8 shows the dif
ferences between these modes, and also the connection between two 
OpenStack domains with different modes. The first one is an SDN 

compatible mode, which can handle requests containing VNFs con
nected by SDN flow rules. In Fig. 8 the domain on the left hand side 
represents this SDN compatible operation. The key requirement inside 
an SDN network that all of the VNFs should contain a wrapper function 
with an included Open vSwitch. This wrapper module allows handling 
control plane messages coming from the orchestrator destined to the 
VNF. Furthermore, the wrapper creates VXLAN tunnel endpoints and 
virtual interfaces in the deployed instances. In our implementation, all 
of the VNFs running in this scenario use a shared Neutron network, 
while their traffic is separated by the VXLAN tunnels. Using the SDN 
compatible operation mode, we need a special VM called “central_VM”, 
which is responsible for handling internal and external data plane con
nections. All of the data plane flows go through the central_VM, where 
the traffic is aggregated by Open vSwitch flow rules. When the ODO 
starts, it checks whether there is any central_VM running in the managed 
domain. 

The other operation type of ODO supports only “legacy IP” network 
connections. In Fig. 8 the domain on the right hand side represents this 
kind of operation, where the VNFs are deployed as simple VMs with no 
extra functions. When the orchestrator deploys a VM in this type of 
domain, it creates as many Neutron networks as required to fulfill the 
VNF’s interface constraints. Each Neutron network is connected to at 
least one router to provide the connection between the deployed VNFs. 

As shown in Fig. 8, we have implemented a solution to interconnect 
legacy IP domains with SDN domains. SDN traffic is represented with 
light blue color, while legacy IP traffic is depicted with grey. This so
lution assumes BGP-based IP VPN networks between domains realized 
by the BagPipe driver. The BaGPipe driver for the BGPVPN service is 
designed to work together with the Open vSwitch ML2 mechanism 
driver. It relies on the use of the bagpipe-bgp BGP VPN implementation 
on all compute nodes and the MPLS compatibility of Open vSwitch. BGP 
VPN is deployed and managed by domain operators, in particular to 
manage Route Target identifiers that control the traffic isolation be
tween different VPN networks. In our multi-domain system, for the 
referred interconnection, both OpenStack domains must have Neutron 
routers associated to at least one BGP VPN network. In the SDN domain, 
there is a special VM called proxy_VM, which makes the traffic encap
sulation and decapsulation between the two networks. On the SDN side, 
the proxy_VM has VXLAN tunnel endpoints, while on the legacy IP - BGP 
VPN side, this instance is connected to at least one router associated to 
the BGP VPN network. 

4.2.4. Docker Domain Orchestrator 
Docker is another important VIM to be adapted, which manages 

light-weight containers instead of VMs. The architecture of our imple
mented Docker Domain Orchestrator (DDO) is shown in Fig. 9. The high- 
level software architecture is similar to the previous one, however there 
are some key differences in the implementation. DDO uses a slicer 
module to simultaneously manage multiple resource and network slices. 

Fig. 8. OpenStack Domain Orchestrator (ODO): connecting IP and SDN- 
compatible OpenStack domains. Fig. 9. The architecture of Docker Domain Orchestrator.  
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Obviously, the domain adapter uses different API calls on Docker 
domain, than the ODO uses on OpenStack. The Docker domains have the 
same number of Open vSwitch as the number of created slices. These 
Open vSwitches handle the SDN network flows inside the domains, 
which are realized by VXLAN tunnels, like in our OpenStack solution. 
The Docker API calls are responsible for the containerized VNF 
deployment. 

4.2.5. SDN and legacy IP Network domains 
We implemented an SDN Orchestrator (SDNO), which is capable of 

managing traffic forwarding rules in OpenFlow networks, without the 
generic capability to run VNFs. However, functions that can be realized 
with OpenFlow rules, e.g., a traffic splitter/duplicator or an IP router, 
can be placed into such a domain. We use SDNO both in virtual (Open 
vSwitch) and hardware based OpenFlow domains. 

We use technology specific adaptation to implement end-to-end 
connectivity over domains with different network service capabilities. 
Such adaptations are implemented in a network service specific 
orchestration component. For example, for IP VPN across IP/MPLS and 
SDN networks, the IP specific component manages IP/MPLS BGP VPN 
specific parameters, configures static routes over the SDN domain and 
stitches the two domains together by injecting routing information of 
the SDN domain into BGP at the stitching point. 

5. Evaluation 

In this section, we evaluate the performance and scalability charac
teristics of our proposed orchestration systems. First, we define a com
mon set of experiments following the general structure of the envisioned 
application presented in Sec. 2. Second, the scalability properties of the 
embedding engines and the overall orchestration processes are analyzed 
in terms of the number of clients and operated edge domains. We focus 
on control plane operations as the behavior of the data plane compo
nents is independent from the orchestration system. 

5.1. Description of the experiments 

In order to conduct similar experiments with the two distinct 
orchestration systems, a common set of scenarios are defined in a gen
eral format. Here, we use the BiS-BiS representation introduced in Sec. 
4.2.2 to describe topologies, network and cloud resources and also the 
service requests. These data models are converted and adjusted to the 
input formats required by the orchestrators, respectively. 

The bottom part of Fig. 10 shows the general structure of our 
distributed cloud (and edge) resources and the topology connecting 
them. The core network, which consists of four transport nodes 

(switches) connected in full-mesh, is responsible for connecting the 
central data center nodes with an arbitrary number of edge domains. 
The available cloud resources (CPU and memory), which could repre
sent either private or public cloud resources, are divided into four BiS- 
BiS nodes, each of them is connected to an associated core switch. 
Edge domains are also represented as standalone BiS-BiS nodes with 
limited amount of resources and with dedicated SAP access points, 
respectively. The total number of edge domains is determined by the 
given test scenario and they are uniquely distributed among the core 
switches. Each virtual link is characterized by its latency and bandwidth 
properties (generated randomly), while all the resource nodes addi
tionally specify the types of supported VNFs, i.e., the set of VNFs which 
can be mapped on and deployed into the related domains. 

Our service requests used in the experiments are illustrated in the 
upper part of Fig. 10. Generated services consist of chains of connected 
VNFs, which provide the alerting functionality for one car/client. Each 
VNF specifies the type of realized functionality and the required amount 
of CPU and memory, while the virtual links in the service chains can 
define optional latency constraints (Furthermore, end-to-end latency 
requirements can also be specified for arbitrary paths in the graph). In 
our experiments, OREC (and optionally PRED) functions are restricted to 
be placed close to the clients/SAPs at the edge of the topology. In one 
service chain there is only a single instance of PRED and STAT VNFs but 
the number of OREC functions is randomized within a predefined range. 
AGGR functions along with the single STAT are shared between the 
chains forming a balanced tree which size fits to the number of chains. 
The service chains in one test request are uniformly distributed among 
the edge SAPs. 

To perform large scale control plane experiments, we generated 
multiple service requests along with the related resource topology for 
each test scenario. The setups are based on increasing number of edge 
domains and service chains, which correspond to the number of wireless 
transmitters at the network edge and to the number of clients/cars that 
need to be served. As we focus on control plane operations, in most 
cases, the data plane of the underlying domains and VIMs are emulated. 
However, the deployment characteristics of our VIM implementations, 
such as Docker and OpenStack, are also analyzed based on small scale 
tests investigating the overhead of VNF launching and the configuration 
of traffic steering rules. 

As Open Source MANO (OSM) (Open Source MANO) is one of the 
most prominent, production-quality orchestration system for NFV-based 
network services and it is released as open source, we use it as a baseline 
in our performance evaluation. However, OSM does not support any 
delay requirements in the service description and it does not take the 
latency characteristics of the underlying networks into account, its 
mapping procedure can be considered as a baseline for the control plane 
operation. Therefore, we constructed the simplified version of our ser
vice requests described in OSM’s format, i.e., the complexity (number of 
constituent VNFs) and the structure (links among the VNFs) of the ser
vices are the same but the delay constraints are excluded, and we con
ducted experiments with OSM in the same environment. Here, we focus 
on the mapping phase of OSM’s operation because in this scenario, its 
deployment engine calls the same OpenStack APIs which are used by our 
prototypes, thus the deployment times are similar. 

5.2. OpenStack experiments with DARK extension 

We set up a dedicated, tailor-made OpenStack cluster which supports 
large scale experiments mainly addressing the control plane perfor
mance. Each compute node and the controller are operated within 
distinct Docker containers spread across three physical servers. A dedi
cated server hosts the controller node container, while on the other two 
machines, 65 compute node containers are launched per server as cen
tral cloud nodes or edge nodes. The latency and bandwidth parameters 
are emulated in our environment by tc (Linux Traffic Control). Each 
server has the following technical specification: Intel(R) Xeon(R) CPU 

Fig. 10. Investigated scenarios: test topologies with cloud and edge resources 
(bottom), service requests (top). 
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E5-2620 0 @ 2.00 GHz, 62 GB RAM. All of the compute nodes are 
deployed with fake Nova drivers, which means that VM actions, such as 
creation, launch, stop or getting diagnostic information, bypass the 
hypervisor which manages only the control plane messages. In order to 
enable experiments in such scale, several tweaks had to be applied. First, 
we had to increase the number of allowed connections to the MySQL 
server because some of the experiments contain thousands of service 
requests. OpenStack stores all information on its components (including 
VMs, ports, port-chains, etc.) in the controller node’s MySQL database 
which is maintained by several internal services. One can easily see that 
the number of database connections is directly proportional to the 
number of instantiated components. Second, a similar approach was 
required to guarantee the proper operation of the message queue 
handler, i.e., RabbitMQ, and the maximum number of open file de
scriptors had to be increased. 

During the experiments, DARK was running on the same physical 
host as the OpenStack controller. DARK operates on top of the regular 
OpenStack services and here, we used the Heat API to physically realize 
the calculated deployments. As DARK operates with chains as service 
request inputs (see Sec.3.1), first we transform the test requests to chains 
in our experiments. During the transformation we iterate through all the 
paths in the original request starting from the SAPs. As the trans
formation is finished, all the SFCs contain all the original service links 
once. A VNF may appear multiple times in the SFC set, however, DARK 
algorithm does not deploy the VNF again but it deploys only the un
processed link between its two endpoints. 

Fig. 11 presents the overall orchestration times of the service de
ployments with extended OpenStack for a selected number of served 
cars and managed edge clusters. In the figures, the runtimes of the 
different orchestration steps (mapping, processing, deployment) are 
shown in terms of increasing number of edge clusters (Fig. 11a) and 
increasing number of clients (Fig. 11b), respectively. We opt to use 
exponentially increasing number of edges and clients in order to cover a 
wide range of scenarios with a feasible number of experiments. Mapping 
is the key process of the orchestration invoking the DARK algorithm, 

while the processing time includes the transformation of the result of the 
mapping algorithm to the corresponding Heat template. The Heat ser
vice sends a callback message when it verified the request and sends the 
proper low-level requests, e.g., VM instantiation, port creation, port- 
chain creation, to other OpenStack services. The deployment time gives 
the elapsed time between the template transformation and the time 
when the last component of the SFC is created. 

The results confirm the good scaling characteristics of the mapping 
algorithm. Both in network size and number of clients, the computa
tional complexity is polynomial (near to linear in the analyzed range) 
which stems from the design of our simple greedy heuristic. Even in case 
of the extreme scenario including 512 clients and 128 edge domains, the 
runtime of the mapping algorithm is around 1000s and the overall 
orchestration time is mainly determined by the deployment phase 
(around 5000s). This holds for all other experiments, i.e., the entire time 
needed to deploy the SFCs is mostly affected by the internal operations 
of OpenStack. In addition, the processing time can always be ignored 
comparing to other phases as the conversion between the data structures 
is not a complex task. As a baseline, the performance of the mapping 
process of OSM is also shown in Fig. 11b. Obviously, DARK needs more 
time to solve a more complex mapping task (taking also the delay con
straints into consideration) but its performance is comparable to the 
baseline. 

More realistic operation regimes are evaluated based on simulations 
with the algorithm (without OpenStack) and the main results are shown 
in Fig. 12. Here, only the running time of the mapping algorithm is 
evaluated for a diverse set of scenarios. We present the mapping time 
results with increasing number of edge clusters in Fig. 12a and with 
increasing number of clients in Fig. 12b. As both plots of Fig. 12 show, 
the number of edge clusters has less effect on the runtime of the algo
rithm than the number of clients. This behavior can be explained by the 
online operation of DARK, which means that the service requests are 
received and processed sequentially. Therefore, DARK cannot place each 
component of the full service in one step rather a gradual embedding 
method is realized. In case of large requests, with the increasing number 
of already deployed service functions and VMs, the chance of migration 

Fig. 11. Detailed DARK orchestration times of large scale experiments in terms 
of increasing number of edge clusters (top) and served cars (bottom). 

Fig. 12. Scalability characteristics of the DARK mapping algorithm.  
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also increases. Migration is one of the most time-consuming operation 
phase and it gets worse when the topology becomes saturated which 
results in increased overall runtime. In Fig. 12a, a relatively poor per
formance can be observed for the use-cases with 1024 clients. For 
example, if we have 128 edge clusters in the underlying infrastructure, 
the orchestration time is around 3000s, which seems unsatisfactory for 
the first sight. However, DARK received more than 3000 service requests 
in this scenario, thus the average runtime for a service request is less 
than 1s, which we consider acceptable. It is worth noting that in the 
presented scenarios, we fed the system with a single batch request 
containing all users’ services. It can be considered as a worst-case sce
nario because in a more realistic operation mode, customers send their 
requests after each other distributed in time. Therefore, the per-user 
processing time will be under a few seconds and it is not necessary to 
wait till the end of the deployment of all others’ service components. 

The good scaling properties (polynomial complexity) of DARK are 
confirmed by the experiments and even for the most complex setup, 
including 1024 clients and around 3800 VNFs, the average mapping 
time of one user’s service remains under 1s. Although the total mapping 
time seems large in Figs. 12 and 11 indicates that the bottleneck of 
realizing complex services, encompassing an extreme number of VNFs, 
would be the deployment process of OpenStack. Figs. 11 and 12 also 
show that the number of clients and the complexity of the services 
(number of VNFs) have higher impact on the deployment time, 
including both the mapping and deployment phases. We can conclude 
that DARK can be a valid option for single-provider setups serving a few 
hundreds of customers over an infrastructure including even 100 edge 
domains. 

5.3. Multi-layer orchestration system based on MORCH 

In our multi-layer experiments, we address similar resource domains 
encompassing the same amount of compute and network capacity as it 
was configured for DARK scenarios. The main difference here is in the 
control plane, more specifically, a dedicated control plane hierarchy is 

constructed on top of the lower layer resources as it is presented in Sec. 
3.2. On the one hand, we have a top-level multi-domain resource 
orchestrator running MORCH. On the other hand, domain orchestrators 
are in charge of controlling lower level compute and network resources 
and exposing abstract resource views towards the upper level multi- 
domain orchestrator. Instead of real domain orchestrators (presented 
in Sec. 4.2.3 and Sec. 4.2.4), we use an emulator implementing the same 
northbound API and the same control plane operations (Actually, the 
emulator inherited the software modules from ODO and DDO). By these 
means, the performance of the multi-layer control plane workflows and 
API overheads can be evaluated. The behaviors of the implemented 
domain orchestrators are highlighted briefly at the end of the section. 

In the analyzed test scenarios, we had a multi-domain orchestrator, 
an SDNO controlling the core network (including 4 switches), 4 in
stances of ODO managing the central cloud domains, and configurable 
number of DDOs managing the distinct edge domains. The test cases 
were conducted on platform with Intel Xeon CPU E5-2640 v3 @ 2.60 
GHz, 16 GB RAM and each software instance was pinned to one vCPU 
core to avoid undesired race conditions. 

Fig. 13 presents the overall orchestration times and relevant phases 
of the operations measured at the multi-domain orchestrator for a 
selected number of served cars and managed edge domains. In Fig. 13a, 
the scalability characteristics of the different orchestration steps are 
shown in terms of increasing number of edge domains, while Fig. 13b 
presents the same results in the dimension of served clients. The plots 
show that even in case of 100+ edge networks and 1000+ clients, the 
pure mapping time remains considerably under the time of additional 
processing and conversion tasks, such as calculating the deployable part 
of the orchestrated service for a managed domain, converting the in
ternal representation into the appropriate data exchange format and 
other domain provisioning tasks. Moreover, the baseline experiments 
with OSM also confirm the efficient operation of the mapping algorithm 
of MORCH. Our algorithm, solving a more complex task than OSM, 
exhibits almost the same performance as OSM’s mapping engine (The 
largest scenario is rejected by OSM because it exceeds the maximum 
service size allowed by the system). Here, the deployment time contains 

Fig. 13. Detailed orchestration times of large scale experiments in terms of 
increasing number of edge domains (top) and served cars (bottom). 

Fig. 14. Scalability characteristics of MORCH mapping algorithm.  
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only the VIM’s control plane overhead gained from our emulator 
(without real data plane operations) and the delay caused by the 
registration of the deployment results at the multi-domain orchestrator’s 
side. The results show that the control plane overhead at the VIMs added 
by our novel northbound API is negligible compared to the mapping and 
processing phases. The mapping time and also the overall orchestration 
time show polynomial scaling characteristics both in the number of 
clients and edge domains which are in line with the analytical results 
calculated for the general algorithm in Sonkoly et al. (2018). 

Fig. 14 depicts the detailed evaluation of the runtime of the core 
embedding algorithm for a wide range of relevant scenarios based on 
simulations (without underlying domain orchestrators). The good 
scaling properties of the algorithm are confirmed for the analyzed range. 
The test results also show that the mean runtimes, up to 32 edges and up 
to 512 clients, are relatively close to each other, anticipating efficient 
operation. Slight randomization in service chains introduced minor 
difference in running times as the measured relative standard deviations 
fell below 4% in all performed test cases. 

Finally, the performance of the domain orchestrators is investigated 
focusing on the comparison of the regular operation and the overhead 
introduced by our northbound API extension. As an example, a given set 
of scenarios is picked up from the previous multi-domain experiments 
(topology consisting of 32 edge domains) and the behavior of a selected 
Docker Domain Orchestrator is analyzed. Here, we repeated the same 
experiments but one of the emulators was replaced by a DDO instance 
with configured data plane (with physical interface bindings and 
VXLAN-based virtual links). Fig. 15 shows the impact of increasing 
number of clients on the deployment time (plotted in log scale). The 

number of clients indicates the size of the original request sent to the top 
level orchestrator. As the clients are distributed randomly among the 
edge domains, the targeted DDO served only 1/32 portion of the cus
tomers in average. Fig. 15 depicts two phases of DDO operation and as a 
reference, plots the performance of our emulator (green curve) indi
cating the pure control plane operation. The blue curve corresponds to 
Docker-related tasks including the communication overhead of the 
Docker daemon, the container initialization time and also our control 
plane extensions. While the orange curve shows the flow rule insertion 
time required to configure the appropriate traffic steering rules. The 
results indicate that the overhead introduced by our northbound API 
extension is smaller in orders of magnitudes than the basic operations of 
Docker. More specifically, the deployment time is mainly determined by 
the VIM itself (Docker-related functions). 

Our other domain orchestrator, namely ODO, manages OpenStack. 
As it is a much more complex VIM than Docker, we expect that the 
overhead caused by our API extension is not significant comparing to the 
general operations. We confirm this expectation via simple experiments 
which are capable of providing a good insight into the system’s 
behavior. In Table 1, the runtimes of two different operational phases 
(and the overall performance) are shown for two different service 

requests. The first phase corresponding to our control plane API 
implementation lasts till the VMs are requested from OpenStack. The 
second phase, which is responsible for the deployment, includes the pure 
VM instantiation and the OVS API calls to the wrapper functions (Here, 
we use ODO in SDN compatibility mode). One can see that according to 
the expectations, the deployment times are the significant components 
mainly affecting the overall performance for both scenarios. More in
formation and further experiments with ODO can be found in Gerő et al. 
(2017). 

5.4. Discussion 

The ultimate goals of the two proposed solutions are similar, how
ever, for different scenarios, different options can be a better fit. Here, 
we summarize the pros and cons of our proposals and compare them 
from multiple aspects. 

On the one hand, OpenStack with DARK controller is a simple system 
and could be a good choice for an operator owning all the resources in a 
smaller domain. If she has an operational OpenStack with central cloud 
resources, then extending it with novel edge domains is quite trivial: 
additional compute nodes should be configured on-site and connected to 
the center. In addition, DARK controller has to be installed, e.g., on the 
master node. This solution scales well for a moderate number of edge 
nodes, however, when a service request consists of too many VNFs (more 
than 1000), the deployment time can be unacceptable. This stems from 
the internal operation of OpenStack. If we add new services gradually 
and not in “batch mode”, this issue can be mitigated. 

On the other hand, the multi-layer orchestration system introduces 
overhead in certain dimensions. First, the available VIMs have to be 
extended with a novel northbound API and the corresponding control 
plane mechanisms. Moreover, the same API must be used in all domains. 
Second, a dedicated component, i.e., the multi-domain resource 
orchestrator, has to be installed and configured in the system. If multiple 
providers are involved in the service provisioning, this approach has to 
be applied. However, this is a feasible option for single operator sce
narios, as well. Based on the inherent service decomposition and 
distributed operation, the scalability characteristics of the multi-layer 
orchestration system are much better in terms of network size and ser
vice complexity. In case of large networks with thousands of users or 
global operators, this is the reasonable approach. 

6. Related work 

We categorize the vast body of research related to the scope of our 
work into four groups. We first list the standardization activities, com
mercial solutions and important research efforts tackling the design of 
edge computing systems. Second, narrowing the scope, we collect the 
most relevant academic papers that describe work aiming at the scalable 
and reliable resource orchestration and/or service management of such 
systems, highlighting those that pay special attention to network-related 
requirements. Third, related to the latter, we give an overview on the 
literature of embedding and scheduling algorithms. Finally, prior art of 
the implementation aspects of integrating VIMs in the orchestration 
platforms is collected. 

6.1. Standardization and commercial edge solutions 

Many standardization bodies, academia and industries such as 

Fig. 15. Performance of a single Docker Domain Orchestrator compared to the 
pure control plane operations implemented by the emulator. 

Table 1 
Performance of ODO: simple experiments.  

VNFs in the 
service 

Control plane 
operation (sec) 

Deployment time 
(sec) 

Overall time 
(sec) 

1 VNF 12.65 79.49 92.62 
10 VNF 86.16 807.2 893.4  
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Institute of Electrical and Electronics Engineers (IEEE) and European 
Telecommunications Standards Institute (ETSI) lead activities on edge 
networks to identify standardization opportunities and gaps. In the 
United States, these activities are managed by the National Science 
Foundation (NSF) Future Internet Architecture initiative and in Europe, 
they are lead under the European Union Framework programs H2020 
and Horizon Europe. 

ETSI is one of the key players in setting telecommunication stan
dards; their purpose is to create a standardized and open environment 
for edge computing. ETSI coined the term Mobile Edge Computing 
(MEC) (Mobile-Edge Computing, 2015) in December 2014 with a white 
paper authored by Huawei, IBM, Intel, Nokia, NTT DOCOMO, and 
Vodafone, defining the aim to shift storage, processing, and control to 
the edge of the network, specifically to Radio Access Networks (RAN). In 
MEC, third-party Application Service Providers are offered cloud 
computing capabilities at the edge of the network with strong focus on 
mobile scenarios. However, nowadays MEC support is provided for both 
fixed and mobile networks. IEEE also started a 5G Working Group (IEEE 
5G Initiative, 2017) and showcased their vision and goals in a white 
paper (IEEE 5G Technical Community, 2017). 

In 2015 the Open Edge Computing project (Open Edge Computing) 
was founded with special emphasis on prototyping applications with 
edge computing. In November 2015 Open Fog Consortium (OpenFog) 
was created (ETSI and OpenFog Consortium) by ARM, Cisco, Dell, Intel, 
Microsoft and Princeton University in order to solve the challenges such 
as latency, bandwidth and communications of advanced concepts, such 
as Tactile Internet, IoT, Artificial Intelligence and Robotics. A group 
called IMT-2020 (SG13) was created by ITU Telecommunication Stan
dardization Sector (ITU-T) to identify and study how 5G technologies 
will interact in future networks. 5G Americas presented a white paper 
(White Paper, 2016) that suggests the 5G requirements in terms of new 
protocols and architectures with emphasis on caching, mobility and 
latency. Next Generation Mobile Networks (NGMN) states the re
quirements and adoption of edge computing in their white paper 
(NGMN 5G White Paper, 2015). The EdgeX Foundry (The Linux Foun
dation Projects) project for IoT edge computing was initiated by Linux 
Foundation with the aim to develop an edge computing platform for IoT 
ecosystems. However, the approach is strongly focusing on industrial 
IoT devices and is limited to microservices. Eurotech presented another 
IoT edge computing platform called the Everyware Software Framework 
(Eurotech) which supports edge applications for IoT devices. The plat
form is developed on the modular Open Service Gateway initiative 
(OSGi). 

In addition to standardization bodies, a lot of vendors are working on 
the hardware and software solutions of edge computing and future 
networking. In this regards, ADLINK technology (ADLINK Technology) 
is very active and provides hardware devices with fog computing and 
MEC features. A product named SETO-1000 (Extreme Outdoor Server) 
was launched by ADLINK which is also a part of the MEC architecture: 
SETO-1000 provides mini cloud like facility closer to the users in RAN. 
Moreover, ADLINK is active and has many contributions in standardized 
bodies such as OpenFog Consortium, Telecom Infra Project (TIP), the 
PCI Industrial Computer Manufacturers Group (PICMG), the PXI Sys
tems Alliance (PXISA), Open Compute Project (OCP), ETSI MEC and 
Network function virtualization (NFV), and the Standardization Group 
for Embedded Technologies (SGET). Advantech (Advantech) also pro
vides hardware solutions such as Packetarium XLc, which is a virtualized 
platform for edge computing deployments. Artesyn (Artesyn) designs 
hardware for next generation networks and has developed MaxCore 
platform for edge computing. The main focus of MaxCore is to enhance 
the platform performance in terms of latency and bandwidth for high 
dense traffic environments. Interdigital (Interdigital) is also working on 
edge computing, SDN and strongly focusing on the research and devel
opment of 5G. Qwilt (Qwilt) offers broadband fixed and wireless ser
vices. Qwilt provides solutions that extend Content Delivery Networks 
(CDNs) with the objective of reducing transport cost and making the 

content delivery more efficient. For that Open Caching software pro
vides quick access to popular content without requesting any action 
from CDNs. Vasona Networks (Vasona Networks) provides solutions to 
optimize RAN performance and provides better QoE to mobile operators 
while using network resources efficiently. Vasona developed 
standard-based platforms for MEC that can cover more than a thousand 
cells and can be placed at aggregation points between RAN and core 
networks. For the cell level a product named SMART AIR is being 
developed that controls the traffic flows at real time. Another product 
called SmartVISION is provided by Vasona that offers real-time assis
tance to operators based on historical data and user activity in a cell, 
which can be used for planning and designing networks. 

Several recent surveys (Shi et al., 2016; Mach and Becvar, 2017; 
Taleb et al., 2017a; Pan and McElhannon, 2018) summarize use cases, 
fundamental key enabling technologies and orchestration deployment 
options of edge computing. In parallel, standardization activities are 
ongoing at ETSI (Multi-access Edge Computing, 2019) and at the 
OpenFog consortium (OpenFog Reference Architecture for Fog 
Computing, 2017), both providing their respective MEC reference ar
chitecture. Various MEC schemes are also proposed from the academia, 
specifically designed e.g., for smart city scenarios (Taleb et al., 2017b), 
and IoT services (Villari et al., 2016). 

6.2. Orchestration systems 

There is plenty of NFV orchestration solutions proposed by re
searchers, and many products are available for this purpose. We depict a 
summary of the features the most prominent orchestration frameworks 
offer in Table 2: we highlight whether the selected orchestration systems 
provide the possibility of defining delay constraints for the applications 
they schedule, and whether they support multiple domains. These two 
features are the ones that distinguish our proposed systems from the 
existing frameworks. The one with the most hype around is Kubernetes 
(Kubernetes); it manages light-weight hypervisors (Linux Containers; 
Docker) typically for the deployment of micro-services into containers. 
For big data applications, Apache YARN (Apache Hadoop YARN), Mesos 
(Apache Mesos) and Marathon (Marathon) are the most commonly used 
technologies in the resource management layer of Hadoop, the de facto 
big data framework. These solutions schedule computational resources 
for applications with little awareness to network parameters, e.g., they 
estimate network bandwidth capacity based on the physical proximity of 
two servers. This estimation works well within one data center, though it 
fails in a multi-cloud environment. To remedy this shortcoming, place
ment solutions for MapReduce tasks deployed in a geographically 
distributed environment propose moving the input data (Ruiz-Alvarez 
and Humphrey, 2014; Cavallo et al., 2016; Heintz et al., 2016; Zhang 
et al., 2014). In contrast, our solutions also consider the networking 
capabilities of the underlying domains. 

Besides the control and orchestration frameworks targeting solely IT 
resources, integrated architectures and experimental solutions address 
the joint control of compute and network resources (Network Functions 
Virtualisation, 2014; Open Source MANO; OPEN-O; OPNFV; CORD; 
Ciena Blue Planet MDSO; OpenBaton; Tacker; ONAP). Most open source 
control and orchestration frameworks are based on the ETSI NFV MANO 
specification (Network Functions Virtualisation, 2014) and thanks to 

Table 2 
Features of existing orchestration systems.  

Name Orchestrated entity Delay constraint Multiple domains 

Openstack VM – – 
Kubernetes Pod – – 
YARN job – ✓ 
Mesos task – – 
Marathon container – – 
OSM VM – ✓  
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their modular architectural design, developers are able to replace each 
component to ensure collaboration with third party software. One of the 
most prominent implementations is OSM (Open Source MANO) that we 
use as baseline in our performance evaluation, described in Sec. 5. 

While most of the solutions provide multi-VIM support, the inter- 
VIM orchestration feature is rudimentary in each of them. Therefore 
Guerzoni et al. (2017), Sun et al. (2018a) and Bhamare et al. (2017) 
studied the problem of SFC orchestration across multiple domains 
and/or for a multi-cloud setup, and proposed functional architectures 
for the end-to-end service management and orchestration plane, 
although with slightly different optimization goals in mind, e.g., mini
mizing inter-domain traffic and response time. In Sun et al. (2018b) the 
authors proposed an alternative to SFC-based service abstraction, and 
for their model, they designed an efficient placement method specif
ically for edge computing topologies. Zanzi et al. (2018) introduced the 
concept of MEC broker as an entity exposing administration and man
agement capabilities while handling heterogeneous tenant privileges. 
Their orchestration solution optimally allocates requested resources in 
compliance with the tenants’ service level agreements. In Sun et al. 
(2018a), the virtual links of the service requests describe only band
width demands, while in Bhamare et al. (2017) and Zanzi et al. (2018), 
only the maximum delays tolerated by the users are included in the 
service level agreements (SLAs). In contrast, our solutions provide 
network-aware orchestration over edge and cloud resources taking both 
delay and bandwidth requirements into account during the service 
deployment. In addition, the solutions presented in Sun et al. (2018a, 
2018b) and Bhamare et al. (2017) do not consider migration as an extra 
step for better utilization, whereas the mapping process described in 
Zanzi et al. (2018) supports VNF migration but based only on delay 
information. On the contrary, our VIM extension (DARK) is able to 
migrate VNFs for better utilization while taking both bandwidth and 
delay characteristics into consideration. 

An example for cross-layer service-specific orchestration is shown in 
He et al. (2017): the authors proposed an integrated framework that 
enables dynamic orchestration of networking, caching, and computing 
resources to improve the performance of applications for smart cities. 

In contrast to the aforementioned solutions, our multi-layer orches
tration system inherently supports different aspects of multi-domain and 
multi-provider scenarios, including techniques for information hiding 
and aggregation together with embedding methods resolving end-to-end 
constraints. 

6.3. Network embedding and task scheduling 

Virtual Network Embedding is the process that maps multiple graphs 
(representing the services composed by interconnected VNFs) (Németh 
et al., 2016) to a common physical infrastructure, represented by a 
resource graph. The VNE problem is known to be 𝒩℘-hard (Amaldi 
et al., 2016), and it has been addressed by a plethora of research ini
tiatives (Amaldi et al., 2016; Chowdhury et al., 2012; Fuerst et al., 2013; 
Bari et al., 2015). Two different approaches emerged for solving the 
problem: i) exact solutions that find solution but these can be applied to 
limited scale problems only, ii) approximation-based algorithms that 
trade the optimal solution for better runtime. Fischer et al. (2013) 
summarizes many solutions for both. In the following we describe 
selected scheduling methods from prior art that are capable of orches
trating applications consisting of multiple components (e.g., SFC) in an 
online manner, i.e., one-by-one as application deployment requests 
arrive. 

Placing service components into the infrastructure is tackled in Guo 
et al. (2018) as a mobile-edge computation offloading problem in 
ultra-dense IoT networks: the authors propose a two-tier game-theoretic 
greedy offloading scheme. Another approach is examined in Zhu and 
Huang (2017) where authors develop a cost-efficient placement method 
for mobile edge applications considering availability and confidentiality 
requirement by applying affinity- and antiaffinity rules. Another 

mathematical problem related to service and resource orchestration is 
task scheduling. Alameddine et al. (2019) propose an approach of jointly 
deciding on the task offloading (placing tasks to MEC servers) and 
scheduling (order of executing them) for IoT devices and applications. 
By decomposing the complex joint optimization problem, the authors 
achieved improvements in the runtime of scheduling decisions. In 
Hassan et al. (2015), researchers study the problem of task offloading 
from mobile device to fog nodes to minimize the response time of the 
application. They leverage pre-trained Multilayer Perceptron models to 
estimate the performance of the tasks, but without considering the 
available resources on the fog nodes. Similarly, authors of Skarlat et al. 
(2017) and Xiao and Krunz (2017) propose solutions for leveraging edge 
resources in a fog environment to provide better service response times. 
Although, in both papers the authors apply distributed and cooperative 
approaches to achieve efficient resource usage, they only consider 
directly connected neighbour nodes for workload propagation. In Bit
tencourt et al. (2017) researchers analyze the scheduling problem by 
focusing on how user mobility can influence application performance 
and how different scheduling policies can improve execution based on 
application characteristics. Authors of Zhang et al. (2019) propose a 
latency-aware edge resource orchestration platform over heterogeneous 
edge clouds. They support real-time responses to computation-intensive 
edge vision applications, completely relying on the Apache Storm 
framework. 

Similarly to these solutions, by providing a network-aware extension 
to VIMs, DARK makes possible to manage both cloud and edge resources 
and orchestrate the required services over a geographically scattered 
infrastructure. On the other hand, differently from the related works 
mentioned above, DARK provides a novel migration mechanism to 
ensure the VNF migration within the managed infrastructure. By moving 
services, DARK is able to i) optimize the computation costs, ii) maximize 
the number of deployed services, and iii) adapt to end user/device 
mobility. Our other solution, i.e., MORCH, inherently supports several 
features required for multi-domain operations, such as automated res
olution of end-to-end delay constraints, operation on abstract and 
limited/aggregated resource views, and a multi-layer, distributed 
backtracking mechanism, which are typically not addressed by available 
algorithms. 

We highlight the capabilities of the discussed research results in 
Table 3 from the aspects that constitute the contribution of our proposed 
methods to the body of research: involvement of delay constraints in the 
scheduling decisions, the ability of managing a large, distributed infra
structure, and the feature of migrating deployed application components 
when it is deemed necessary. 

6.4. Virtual infrastructure adaptation 

In OpenStack the nova-scheduler component is responsible for man
aging computational resources on the hypervisor of each physical host. 
The placement strategy applied therein, called filter scheduler 

Table 3 
Features of scheduling algorithms in related work.  

Reference Delay 
constraint 

Multiple 
domains 

VM/Pod/VNF 
migration 

Guo et al. (2018) – ✓ – 
Zhu and Huang 

(2017) 
– – – 

Alameddine et al. 
(2019) 

✓ – – 

Hassan et al. (2015) – ✓ – 
Skarlat et al. (2017) ✓ ✓ – 
Xiao and Krunz 

(2017) 
✓ ✓ – 

Bittencourt et al. 
(2017) 

✓ ✓ – 

Zhang et al. (2019) – – –  

B. Sonkoly et al.                                                                                                                                                                                                                                



Journal of Network and Computer Applications 170 (2020) 102785

16

(OpenStack Nova Filter Scheduler), has several limitations. For one, the 
sequential processing of VM requests makes it impossible to define 
complex placement constraints that affect more than one instance. 
Furthermore, the filtering step currently does not consider any 
networking related metrics, which might be a shortcoming in a MEC 
infrastructure. 

Various extensions to OpenStack were proposed (Scharf et al., 2015; 
Sahasrabudhe and Sonawani, 2015) for the support of network-aware 
placement of instances. These solutions take into account bandwidth 
constraints to and from nodes by keeping track of host-local network 
resource allocation. Authors of Lucrezia et al. (2015) introduced a 
network-aware scheduler that aimed at optimizing the VM placement 
from a networking perspective: they used OpenDayLight (OpenDay
Light) to collect network topology information and to configure traffic 
steering with the goal of minimizing the bandwidth utilization of 
physical links. Haja et al. (2018) proposed a solution that alleviated the 
need for running OpenStack controllers in the lightweight edge, plus it 
took into account network aspects that are extremely important in a 
resource setup with remote fogs. In contrast to these solutions, DARK 
can take both the delay and bandwidth characteristics into consider
ation and in addition, it is able to migrate VNFs to achieve better utili
zation, which is typically not supported by available systems. 

Using lightweight container-based virtualization techniques has also 
been investigated (Alam et al., 2018; Farris et al., 2017; Xiong et al., 
2018) in order to design modular, scalable, distributed deployments for 
highly dynamic service deployment in MEC environments, e.g., by 
proactively exploiting service replication, or by ensuring a unified 
multi-tenant communication infrastructure between edge and cloud 
with fault tolerance and high availability. 

7. Conclusion 

The strong trend of virtualization has resulted in most online appli
cations being containerized and run in VMs in the cloud instead of being 
deployed on bare metal in-house. The progress continues by the spread 
of fog and edge computing systems, which together with the advanced 
wireless radio technology of 5G and the plethora of smart devices and 
sensors of the Internet of Things, will provide the possibility of creating 
ultra time-critical online applications. 

In this work, we presented two alternatives for the service orches
tration in such distributed edge systems. We propose either to orches
trate the system in a completely flat architecture, or in a hierarchical 
recursive manner. The first option assumes that all the infrastructure 
islands are controlled by a single manager, i.e., OpenStack, so an 
extension is proposed to make it suitable for the distributed edge to
pology. The second option places an extra orchestration component next 
to each infrastructure manager, e.g., next to an edge node’s Docker 
engine, and organizes them in a multi-layer topology. With both solu
tions our aim is to quickly and efficiently map incoming service 
deployment requests to physical resources. 

We presented the design choices and implementation caveats in 
detail and we showed the performance of both solutions with simulated 
and emulated edge infrastructure. In order to evaluate the efficiency of 
the proposed solutions, we compared them to a production-quality 
orchestration system providing a baseline for a basic set of features. 
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