
Journal of Network and Computer Applications 170 (2020) 102785

Available online 29 August 2020
1084-8045/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Scalable edge cloud platforms for IoT services

Balázs Sonkoly a,b,*, Dávid Haja a,b, Balázs Németh a,b, Márk Szalay a,b, János Czentye a,b,
Róbert Szabó c, Rehmat Ullah e, Byung-Seo Kim d, László Toka a,b

a MTA-BME Network Softwarization Research Group, Hungary
b Budapest University of Technology and Economics, Hungary
c Ericsson Research, Hungary
d Hongik University, Sejong, South Korea
e Gachon University, Seongnam, South Korea

A R T I C L E I N F O

Keywords:
Edge computing
Resource orchestration
SDN
NFV
IoT

A B S T R A C T

Nowadays, online applications are moving to the cloud, and for delay-sensitive ones, the cloud is being extended
with edge/fog domains. Emerging cloud platforms that tightly integrate compute and network resources enable
novel services, such as versatile IoT (Internet of Things), augmented reality or Tactile Internet applications.
Virtual infrastructure managers (VIMs), network controllers and upper-level orchestrators are in charge of
managing these distributed resources. A key and challenging task of these orchestrators is to find the proper
placement for software components of the services. As the basic variant of the related theoretical problem
(Virtual Network Embedding) is known to be 𝒩℘-hard, heuristic solutions and approximations can be addressed.
In this paper, we propose two architecture options together with proof-of-concept prototypes and corresponding
embedding algorithms, which enable the provisioning of delay-sensitive IoT applications. On the one hand, we
extend the VIM itself with network-awareness, typically not available in today’s VIMs. On the other hand, we
propose a multi-layer orchestration system where an orchestrator is added on top of VIMs and network con
trollers to integrate different resource domains. We argue that the large-scale performance and feasibility of the
proposals can only be evaluated with complete prototypes, including all relevant components. Therefore, we
implemented fully-fledged solutions and conducted large-scale experiments to reveal the scalability character
istics of both approaches. We found that our VIM extension can be a valid option for single-provider setups
encompassing even 100 edge domains (Points of Presence equipped with multiple servers) and serving a few
hundreds of customers. Whereas, our multi-layer orchestration system showed better scaling characteristics in a
wider range of scenarios at the cost of a more complex control plane including additional entities and novel APIs
(Application Programming Interfaces).

1. Introduction

Fog and edge computing are novel concepts extending traditional
cloud computing approach by deploying compute resources closer to
customers and end devices. Although the two concepts are similar since
both shift the computation and storage closer to the edge of the network,
they are not identical. As the authors of Yousefpour et al. (2019) and Ren
et al. (2019) emphasize, fog computing has an n-tier hierarchical ar
chitecture that means all the network devices along the routing path
between the end device and the cloud can provide computing,
networking, storage, control, and acceleration services. In contrast, edge
computing tends to be limited to computing at servers deployed one (or

a few) hop away from the end devices typically at macro or micro base
stations. Apart from the differences, both approaches enable several
future 5G applications and network services, such as IoT applications,
Tactile Internet, AR/VR (augmented/virtual reality) use-cases, or
remote driving. Edge resources provide execution environments close to
users in terms of latency (e.g., in mobile base stations). By these means,
on the one hand, customers’ devices can offload computational tasks to
this environment instead of consuming their local resources. On the
other hand, latency-critical functions can be offloaded from central
clouds to the edge enabling critical machine type communication which
is required by various envisioned services.

A dedicated component, namely the resource orchestrator (RO), is in

* Corresponding author. Budapest University of Technology and Economics, Hungary.
E-mail address: balazs.sonkoly@tmit.bme.hu (B. Sonkoly).

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

https://doi.org/10.1016/j.jnca.2020.102785
Received 24 January 2020; Received in revised form 3 July 2020; Accepted 27 July 2020

mailto:balazs.sonkoly@tmit.bme.hu
www.sciencedirect.com/science/journal/10848045
https://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2020.102785
https://doi.org/10.1016/j.jnca.2020.102785
https://doi.org/10.1016/j.jnca.2020.102785
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102785&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Network and Computer Applications 170 (2020) 102785

2

charge of finding the proper placement of software components real
izing the service. Following ETSI’s1 terminologies on Network Function
Virtualization (NFV) (White Paper, 2013), the software modules
composing the network service are referred to as Virtual Network
Functions (VNFs). RO can be considered as a component encompassing
orchestration related tasks, and in ETSI’s architecture it appears both in
the Virtual Infrastructure Manager (VIM) and in the NFV Orchestrator
(NFVO). In general, RO assigns VNFs composing the service to compute
resources and also allocates paths between connected VNFs.

A novel RO (or a hierarchy of ROs) which can efficiently manage
underlying resources in edge cloud or mobile edge computing environ
ments is an inevitable future component with challenging tasks. It must
be able to jointly handle compute and network resources in a tightly
integrated framework and it must be aware of network characteristics
besides computing capabilities. Furthermore, the requested network
services have to be created on-the-fly within seconds. It is challenging as
even the problem of Virtual Network Embedding (VNE) is known to be
𝒩℘-hard (Rost and Schmid, 2020) which addresses only the mapping of
network elements. Two different design approaches can be applied to
achieve such features. On the one hand, the VIM itself can be extended
with network-awareness and with the detailed view on network re
sources. This feature is typically not available in today’s VIMs. With such
an upgrade, the additional NFVO becomes unnecessary for
single-provider setups where resources belong to the same operator, and
by these means, the orchestration and deployment time can be reduced
significantly. Apparently, this approach can be feasible only for smaller
systems encompassing a limited number of resource pools due to scal
ability issues. On the other hand, on top of VIMs and network control
lers, a higher level orchestrator, i.e., the NFVO, can be added which is
able to combine/integrate different resource domains. This solution
results in a hierarchy of ROs and the cooperation of VIMs and NFVO
yielding larger deployment time and the need for strictly defined
external APIs. However, multi-provider scenarios require this approach
(Gerő et al., 2017; Vaishnavi et al., 2018), and it yields a scalable so
lution for larger networks.

In this paper, we propose fully-fledged solutions for both approaches
and evaluate their performance characteristics. As today’s most widely
deployed open-source VIM is OpenStack, we target that platform. As a
first solution, we propose and implement a novel extension to OpenStack
which makes it a network-aware resource orchestrator. As a result, a
single OpenStack system will be in charge of controlling both the cloud
and edge resources and the VNFs are implemented as virtual machines
(VMs). For more complex multi-provider scenarios, we propose a multi-
layer orchestration system where cloud resources are managed by
OpenStack while edge resources are under the control of Docker. This
requires Docker engines to be installed on edge servers. We assume that
at the edge of the system limited amount of compute resources are
available, therefore to reduce the virtualization overhead in our multi-
provider scenarios we opt for using light-weight software containers
instead of virtual machines. Both VIMs (OpenStack and Docker) are
extended with a common resource control API and a multi-domain
NFVO is added on top. We assume that each VNF can be run as a VM
or as a container and the NFVO selects the preferred deployment option
on-the-fly.

Our contribution is threefold. First, we define the two architecture
proposals, highlight the main benefits and the limitations. We also
provide online embedding algorithms together with information models
adjusted to the architectures, respectively. These algorithms are the key
components of the orchestration systems significantly affecting the
overall performance. Second, we implement proof-of-concept pro
totypes capturing the relevant parts of the proposed systems. And
finally, we evaluate the concepts via large-scale simulations and real

experiments to reveal the scalability characteristics of both approaches.
In order to enable realistic experiments with both prototypes, we set up
two dedicated, fully operational testbed environments including multi
ple blade servers and the whole software stacks. The results confirm that
the simple VIM extension can be a valid option for single-provider setups
up to 100 edge Points of Presence (PoPs) and serving a few hundreds of
customers, whereas our multi-layer orchestration system shows better
scaling characteristics in terms of the number of clients and in the
network size. More exactly, our mapping algorithm supports thousands
of users and hundreds of edge PoPs, while its operation overhead is
minimal, compared to a de facto standard system which cannot handle
latency constraints.

The rest of the paper is organized as follows. In Sec. 2, we highlight
an envisioned service as an illustration. Sec. 3 is devoted to the archi
tecture proposals and the corresponding resource orchestration algo
rithms. Sec. 4 describes our proof-of-concept prototypes. In Sec. 5, we
present our main results with the two implemented prototypes and
reveal the main performance characteristics. In Sec. 6, a summary of the
related work is given while Sec. 7 draws the conclusion.

2. An illustrative use-case

We chose an automotive use case in order to illustrate the power of
the edge cloud computing concept: an alerting system that raises
drivers’ attention to road dangers ahead. Although this type of service
already exists,2 its implementation as a novel IoT application in a
distributed system offers improved capabilities to the existing ones’. The
advancement stems from the round-trip delay saving, i.e., faster alerts to
drivers, provided by the local edge instead of the remote central cloud
computing infrastructure.

The schematic description of the envisioned IoT application is
depicted in Fig. 1. The service is composed of multiple components. The
Object recognition (OREC) function instances process images and video
streams uploaded from cars that are being driven by customers/clients
of the application provider, connected to wireless access networks, e.g.,
4G mobile service. The OREC instances are deployed at the edge of the
network as close to the cars as possible in order to ensure the lowest
latency until object recognition. Hazardous objects that these functions
look for in the input data can be wild animals crossing the road, storm
destructed trees laying across the asphalt, or biker in the city, kids
around the school, etc. OREC instances process all upload streams and
feed instant alerts back to the respective drives if necessary. Prediction
engines (PRED) are deployed possibly co-hosted with OREC instances in

Fig. 1. The actors and components of the distributed road danger alert
ing system.

1 European Telecommunications Standards Institute (ETSI), https://www.et
si.org/. 2 https://www.here.com/products/automotive/hazard-warnings.

B. Sonkoly et al.

https://www.etsi.org/
https://www.etsi.org/
https://www.here.com/products/automotive/hazard-warnings

Journal of Network and Computer Applications 170 (2020) 102785

3

order to forecast imminent and short-term dangers based on the recog
nized hazardous situation, e.g., animals approaching the road. Both
components can emit alerts to the drivers in case their own car or the
cars ahead uploaded visual data that were flagged as an instant or
imminent danger situation. The alert messages are displayed to the
driver or even trigger automatic emergency braking if needed. Alerts can
also be sent to those customers who do not provide video uploads to the
system due to lack of integrated or dash cams.

Similarly to centralized existing services, the system comprises
aggregating (AGGR) and statistical (STAT) function components in data
centers. As their delay requirements are not considered critical, these
functions are better not to be placed on scarce edge resources. The AGGR
instances correlate and aggregate the events reported by the OREC and
PRED functions scattered in the edge infrastructure. The function can be
scaled according to the actual demand. For overall statistics and the
continuous learning of the recognition and prediction features, the
centralized STAT components collect all important data from the system
and send the training data back to OREC and PRED functions.

Note that all types of components can be dynamically stopped,
started, migrated across the whole infrastructure as needed. Migration
of functions might be required for stateful PRED components as those
must follow drivers on their tracks. In Fig. 1 we depict with dashed
bubbles the edge domains (EDGE) and the data center (CLOUD).
Furthermore, by exploiting the possibilities of the edge computing
concept, the edge-deployed PREDs can provide inputs directly among
themselves, e.g., predicting hazardous situations for cars. Therefore the
inputs can be handled and being processed by other edge domains,
following the car based on whose video feed a danger had been detected.

3. Proposed architectures and algorithms

In order to enable future services with strict latency bounds, such as
the envisioned example shown in Sec. 2, geographically distributed re
sources have to be managed and controlled carefully in an integrated
system. Resource orchestration in distributed cloud environments is a
challenging task and novel algorithms, workflows and architectures are
needed to meet application level requirements. Here, we present two
architecture proposals with different capabilities together with the key
algorithms responsible for resource orchestration.

3.1. DARK: extended VIM for a single provider

The first and simpler architecture option is to extend a VIM in order
to support edge cloud infrastructures. Today’s VIMs typically designed
for data center environments where the resources (compute, storage,
network) are placed close to each other in a central premises and the
well-designed network topology provides extreme bisection bandwidth.
To put it simply, we have zero delay and infinite throughput between the
VMs. Thus, widely used scheduler algorithms do not take the network
characteristics into consideration. In this section, we propose a novel
orchestration algorithm, called DARK, that aims to cope with the new
challenges of distributed cloud architectures where delays cannot be
ignored. It provides a general extension to traditional VIMs by adding
“network-awareness” to the resource orchestration process. The basic
version of the algorithm was described in Haja et al. (2018). Here, we
introduce the resource model including network topologies, the service
model and summarize the main steps of our heuristics.

3.1.1. Resource and service models
Our network model for a three-tier edge computing architecture

consists of a given number of edge clusters and central clouds connected
via the core network as it is shown in the example in Fig. 2. In DARK, the
physical architecture is represented as a graph called resource graph
(RG). Each edge cluster contains a pre-defined number of servers with
given computing capabilities (CPU, RAM and storage) and two gateway
nodes. Each of the clusters has a SAP (Service Access Point) attached to it

via the SAP-Gateway. The SAP works as a connection point to the
network. The end devices can consume the remote resources through
this interface (e.g., a mobile base station). We assume that edge clusters,
including their servers, have preconfigured, in typical scenarios, limited,
computational resources (from one single server to a few number of rack
cabinets) that we consider during the deployment of services. Within a
cluster, the nodes are connected in a full mesh topology. The edge
clusters and the cloud data centers are connected to each other via the
core network. Each link in our graph is weighted with the latency and
bandwidth value corresponding to the physical connection characteris
tics. A topology may contain any number of cloud domains that are
owned either by the service provider or another operator (e.g., Amazon).
We assume that cloud data centers have much more compute, storage
and memory capacity, than the edge clusters. In cases, when other op
erator’s resources are considered the service provider has to pay a fee for
consumed resources according to a cost model. However, in this archi
tecture option, we assume a single provider using only her own
resources.

Our novel orchestration algorithm takes a set of Service Function
Chains (SFC) as its input. More complex services are generally described
by abstract Service Graphs (SG) encompassing multiple chains. This
representation can easily be transformed into a set of SFCs. An example
transformation and our processed inputs are shown in Fig. 3 as an
illustration. Each SFC contains a SAP as its starting point and numerous
Virtual Network Functions (VNFs) realize the computational tasks in the
service. In Fig. 3, each color represents different instances of a given VNF
type. We consider the edges between the virtual nodes as bidirectional
virtual links, which may have bandwidth and delay requirements. The
delay requirements define the maximum tolerated latency between the
two nodes and the given bandwidth requirement specifies the minimum
throughput for the virtual link.

Fig. 2. DARK’s resource model.

Fig. 3. DARK’s service model (set of chains).

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

4

3.1.2. Mapping algorithm
The key component of DARK is our online mapping algorithm which

maps the incoming service requests, given as service graphs, to the
resource graph, describing the current state of the infrastructure and the
already deployed services. Our greedy, heuristic solution processes SFCs
starting from a SAP, moves forward on the virtual links toward con
nected VNFs and deploys the virtual entities on the physical system step-
by-step. The pseudo-code of our algorithm is provided in Alg. 1. An
important feature of our approach is the ability of VNF migration:
moving a given set of already deployed network functions to the cloud or
to other edge clusters if necessary. By these means, resources in given
edge domains can be released in order to admit more services with strict
latency constraints.

Algorithm 1
Service graph mapping to resource graph.

1: procedure MAP(SG, RG, migratable_vnfs)
2: running ←copy(RG)
3: mapped_vnodes ←∅
4: map_list ←ORDERSUBCHAINS(SG)
5: mapped_vnodes.insert(SG.saps.first)
6: rollback_level = 0
7: for all (u, v, link) ∈map_list do
8: if u ∈mapped_vnodes and v ∈mapped_vnodes then
9: success ← MAPVIRTUALLINK(link)
10: else if u ∕∈ SG.saps then
11: success ← MAPVNF(u, v, link)
12: else ⊳ This means actual_element is a SAP
13: success ← MAPVLINK2SAP(u, v, link)
14: end if
15: if ¬success and rb_level ≥ max_rb then
16: success ← MIGRATING(migratable_vnfs, u, v)
17: else
18: success ← ROLLBACK(u, v, link)
19: rollback_level + = 1
20: end if
21: if success then
22: mapped_vnodes.insert(v)
23: end if
24: end fordone
25: end procedure

The MAP function receives three parameters: the actual service
request represented as a service graph (SG), the physical architecture as
a resource graph (RG) and a list called migratable_vnfs that contains
previously deployed VNFs, which might be migrated to other physical
hosts. After initialization, in the first step of our algorithm, we determine
the order of execution, which can have a significant impact on the final
result of the greedy algorithm. Since our mapping process begins at a
SAP and moves forward on the virtual links, a key requirement of
mapping VNFs is that we need to be able to determine the reference
nodes in the system, from where we have to fulfill the defined network
requirements in the SFC. According to this, we have to split the incoming
service request into a sequence of subchains, where each subchain holds
the following elements: i) a VNF that is already processed or a SAP; ii)
another virtual node to be examined; iii) a virtual link that connects the
previous two nodes and defines the network requirements between
them. According to our intuition, the deployment of VNFs connected
with virtual links defining tighter latency bounds is more complicated
and we have fewer options for hosting them. Therefore, we want to sort
the previously described subchains based on the strictness of their delay
requirements, but keeping in mind that at least one node in the subchain
must have been mapped before, when our mapping algorithm reaches
that subchain during its execution. The ORDERSUBCHAINS method is
responsible for this ordering. More specifically, it splits the incoming
service request into a list of triplets (subchain) containing the links and
their connected nodes (u,v), i.e., the VNFs.

The next step is the mapping of the service request to the underlying

physical infrastructure. The MAP method iterates trough the previously
ordered list of triplets. During the mapping we refer to the elements of
each triplet as: previous element, actual element and virtual link. The
steps of processing a triplet are presented by the flowchart shown in
Fig. 4. Depending on the status of the nodes connected by the virtual
link, three different cases are possible.

Mapping virtual link between VNFs: If both ends have already been
allocated to a computing resource previously, then only a suitable path
for the virtual edge needs to be found. The MAPVIRTUALLINK method
will find this path if it exists. If both of the virtual elements are in the
same cluster, we are done, since we assume that there is no network
bottleneck inside a cluster. Anyway, with Dijkstra’s algorithm we
determine the shortest path, in terms of network latency, between the
hosts in the physical topology. If the found path’s latency is lower than
the required, and all the links of the path have enough available band
width for hosting the new virtual link, then we can map the requested
virtual link in the topology. This method can be reviewed on the right
side of Fig. 4.

Mapping VNF: If the actual element is a VNF and it is not deployed
yet, the MAPVNF function will map it to the underlying system. The core
steps of MAPVNF is presented in the middle branch of the flowchart.
First, it filters the available physical nodes based on their computing
resources, and after that it checks if the candidate is reachable from the
previous node via any sequence of edges. If the path does not satisfy the
latency requirement, or any of the edges do not have enough bandwidth,
then that physical node is removed from the list of candidates. When the
list of compatible physical nodes is available, they will be sorted based
on the resource cost of hosting the actual VNF. After the host node is
determined, the link can also be mapped by applying the previously seen
method (MAPVIRTUALLINK).

Mapping virtual link between VNF and SAP: In that case, when the
actual element is a SAP, then the algorithm calculates the path – starting
from the previously mapped VNF (previous element) – with the lowest
latency, where the required bandwidth is available on all edges. If the
path fulfills the latency requirement, the virtual links are mapped to the

Fig. 4. Flowchart of DARK’s mapping algorithm.

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

5

corresponding physical links. This MAPVLINK2SAP method works
similarly as MAPVIRTUALLINK and presented on the left side of Fig. 4.

Rollbacking: It may occur that during the mapping of a given service
chain, one of the above steps fails, which is noted with the “Fail” circle in
the flowchart of Fig. 4. For example, none of the nodes have enough
resources to host a given VNF, or the network-related requirements
cannot be met. In that case, the algorithm tries to step back to a previous
state. This step is performed by the ROLLBACK method. By setting the
max_rollback constant to an appropriate value, the service provider can
limit the number of rollback steps in order to ensure an acceptable
runtime. In each step of the ROLLBACK method, we restore a state that
was previously achieved, modify that state, then continue the mapping
from that modified status. In practice, let us consider that we cannot
deploy the actual element due to some reasons. We call the ROLLBACK
method that examines the suitable nodes for the previous element and
chooses a different one than the MAPVNF chose previously. We consider
this state modification as one rollback step. If we still cannot map the
actual element, then we choose another physical node from the suitable
nodes of the previous element. In that case, when we tried all the suit
able nodes for the previous element, the ROLLBACK takes another step
back in the SFC. By these means, we try to relocate each previous VNF in
the SG beginning from the previous element – in the current triplet – to
the very first VNF of the service, until we can successfully deploy the
actual VNF or the amount of ROLLBACK steps reaches the max_rollback
limit. If the number of rollbacks exceeds the max_rollback limit, then the
algorithm tries to migrate one or more already mapped VNFs to another
cluster or even to the cloud, thus freeing up resources in the edge cluster.
It is worth noting that our algorithm does not deploy service components
separately, thus either all components of a service request are success
fully deployed or the request is rejected.

3.1.3. Migrating VNFs
A central and novel feature of the DARK algorithm is the support of

VNF migration. This process is essential to enable dynamic operations
and adaptability to varying workload or changing environment (e.g.,
moving car). According to our resource model, two migration directions
may occur: i) from edge server to the cloud and ii) from edge server to
edge server. On the one hand, the goal of the former is usually cost
optimization. On the other hand, the latter is essential for fast adapta
tion, but it also increases the chance of successful deployment of a VNF
into the edge server. In our algorithm, MIGRATING method attempts to
migrate a previously deployed VNF from the given server in order to free
up enough computation resources for the newly arrived VNF to deploy.
Its workflow can be described in three phases: i) detecting the list of
possible VNFs to migrate, and collecting where they could be relocated,
ii) on the temporary resource model executing the migration and iii)
checking whether the migration violates the network requirements of
the migrated VNF.

Being central to our concept, we discuss our MIGRATING method in
more detail and it is described as a pseudo-code in Alg. 2.

It returns true or false depending on the migration was successful or
not. The three input arguments consist of the (migratable_vnfs) previously
mentioned list in Alg. 1 of non-delay-sensitive network functions, (u) the
actual VNF to be deployed and (v) the previous VNF in the service
function chain connected to u. Please note that the VNF v is already
handled by the embedding algorithm, so it is deployed to a physical node
of the computing system.

The migration procedure could be summarized in the following three
phases. First (lines 2–7), it iterates through the list containing migrat
able functions (i.e., non-delay-sensitive VNFs) and checks the compute
constraints using ISLARGER method in lines 3 and 4. The ISLARGER
method returns true if the consumed compute resources (CPU, RAM, and
storage) of the migratable VNF are larger than the required by u. In this
case, VNF u could be placed into the physical node instead of the
migratable VNF. In the line 6, the GETCOMPNODES method returns the
list of possible nodes where the migratable VNF could be migrated to.

The second phase of the MIGRATING method (lines 8–12) iterates
through these possible physical nodes and attempts to execute the
migration process. If the method did not reach the maximum number of
migration tries (line 9), it makes the backup resource and service graphs
(lines 10–11) describing the current status of the computing system, and
executes the migration process by the TRYMIGRATE method (line 12).
This method, first, removes the migratable VNF from the original
physical node, places it into the possible target node, and reconfigures
the connected virtual links to use another physical link path between the
VNFs. Furthermore, the method also maps the actual VNF u to the server
from where the migratable one was moved, and determines the physical
links to implement the virtual link between the u and v. So far, only the
compute constraints of the VNFs have been checked, however, the
network requirements may fail during the mapping.

The third phase of the migration procedure (lines 13–19) is to check
whether the migration was successful. If the physical links fulfill the
corresponding virtual link’s network requirements, then the TRYMI
GRATE method returns true, thus the procedure of migrating was suc
cessful (line 13). Otherwise, RESETRG and RESETSGS restore the
previous state of the resource/service graphs (lines 16–17), and
continue with the next migration option from the list. Instead of
checking all the possible migration options (migratable VNFs and
possible physical nodes), in order to control the runtime, we test only a
limited number of options. This iteration number can be controlled by

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

6

defining the value of max_try and max_vnf environment values. The
computational complexity of the algorithm is polynomial (details in
Haja et al. (2018)).

In summary, the key innovation in DARK is the network-aware
migration process that can migrate already deployed VNFs in order to
make room for other services if it is possible. Our solution is able to
migrate the VNFs either between two edge servers (that can be in the
same or different clusters) or from edge server to the cloud. Naturally,
this migration process takes all network requirements into account and
the migration is triggered if and only if each requirement is met in the
resulted state. In order to ensure the correctness of the DARK mapping,
we use admission control: the elements of the SFC are deployed to the
OpenStack servers if and only if the hosts contain enough computation
(CPU, memory, storage) resource to store the VNFs and the network
among the hosts fulfills network requirements (bandwidth and latency)
which are defined between VNFs of the service. The admission control is
ensured in every case, even when DARK migrates VNFs between
clusters.

3.2. MORCH: orchestration for multi-layer architecture

Our second architecture proposal introduces an upper-level NFVO on
top of VIMs. This is an adoption of our general orchestration system
proposed for 5G networks (Vaishnavi et al., 2018; EU H2020 5G Ex
change project) which supports arbitrary orchestration hierarchies
where the orchestrators can control what to expose towards upper-layer
NFVOs. We make use of the main elements related to resource orches
tration and adjust them to edge cloud infrastructures and the re
quirements of future IoT applications. This approach is suitable for
multi-provider scenarios. We note that the algorithms are described in
our previous works (Németh et al., 2016; Sonkoly et al., 2018), however,
it is important to inspect them as part of the overall system, as they
might cause bottlenecks and crucially affect the performance. Therefore,
here we focus on their integration into the architecture, address the
algorithmic challenges of such adaptation, and highlight the key fea
tures required by the multi-provider operation. Consequently, we pre
sent the automated resolution of end-to-end constraints, domain-error
handling based on a distributed backtracking mechanism and the
inherent support of information hiding and resource aggregation.

3.2.1. Proposed architecture
The proposed architecture is shown in Fig. 5. Each edge domain or a

cluster of edge domains is/are under the control of a dedicated VIM. On
top of VIMs, a common northbound API is added which role is twofold.
First, it exposes a bottom-up resource view including compute, memory

and storage capacity and a simplified network model. The abstract
network model (big switch) describes ingress/egress link characteristics
in terms of delay and bandwidth, and provides aggregated information
on the internal network, i.e., path characteristics among ports (A similar
model is presented in Sonkoly et al. (2015)). Second, the top-down
resource control is also realized via this interface where the service re
quests as service function chains with latency and bandwidth constraints
can be defined.

NFVO is responsible for integrating the underlying edge domains as
well as the cloud resources. Central cloud or clouds is/are also controlled
by dedicated VIM(s) with the previous API extension. The service re
quests received at the northbound API of the NFVO (same as the VIMs’
API in our proposal), are mapped to underlying resource domains and
decomposed accordingly. The “sub-service” requests are sent then to the
involved edge or cloud orchestrators using the recurring resource con
trol API.

3.2.2. Highlights of the key algorithms
The basic idea of our second orchestration algorithm for multi-layer

scenarios (MORCH) is similar to the one explained earlier in Sec. 3.1
disregarding the inherent VNF migration capabilities. Multi-layer VNF
migration can be achieved by re-running the MORCH algorithm when a
dedicated monitoring system triggers it, which could result in relocating
previously deployed VNFs. Our multi-layer orchestrator engine uses a
graph-based, heuristic-guided greedy backtracking search on the
resource graph structure. In our earlier work, we have presented the
details of the algorithm (Németh et al., 2016; Sonkoly et al., 2018) and
its good scaling properties, now we show how it has been adapted to
create our multi-layer orchestration system. MORCH operates on the
abstraction level of the substrate topology infrastructure which is shown
by the underlying VIMs and their interconnections.

An elementary embedding step of MORCH is the greedy mapping of a
VNF and an adjacent service graph link onto a hosting (abstract) big
switch node (shown by the VIMs, respectively) and onto a path con
sisting of VIM connections. After each successful greedy step, the algo
rithm’s data structures representing the currently available substrate
resources are updated. In case such a greedy step is not able to find a
suitable hosting option, MORCH performs backtracking similarly to
DARK. The orchestration engine provides an embedding solution when
all elements of the service graph have been successfully mapped
respecting each aspect of the requirements or refuses the request.

Our MORCH algorithm is parameterizable both in terms of search
space size and search behavior. The former can be tuned by the back
tracking parameters (i) defining how many hosting alternatives of an
elementary step shall be stored (branching factor), and (ii) how many
consecutive greedy steps can be undone in the search tree (backtracking
depth). Search behavior is controlled by several parameters of the
preference function defining the heuristic. At each greedy step, the most
preferred substrate node and path are chosen as the host of the currently
considered VNF and its adjacent service graph link.

Due to the hidden information shown by the abstract big switch
nodes of the VIM layer, it is possible that a selected embedding solution
on the abstract view of an upper layer turns out to be impossible to map
on a VIM’s full infrastructure view. In this case, MORCH and the domain
orchestrators communicate this failure to the appropriate domains,
which undo the failed service instantiation. A subset of the underlying
domains might have successfully mapped their part of the segmented
service graph, in case of a failure, these instantiations must be undone.
Our algorithm supports this scenario efficiently: if a lower abstraction
layer failure notification arrives, the greedy backtracking search of
MORCH continues from the latest solution, eliminating the need to start
the whole orchestration process from scratch.

In addition to basic service graph requirements, such as node and
link capacities, VNF type constraints and link-wise delay requirements,
MORCH supports end-to-end delay constraints on service graph paths
between SAPs. An end-to-end path is shown in Fig. 5 on service graph

Fig. 5. Proposed multi-layer orchestration system for edge cloud
infrastructures.

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

7

links 1, 2 and 5. If such an end-to-end requirement is given for orches
tration over an abstract resource view, a delay budget is allocated
(respecting the overall end-to-end requirement) for all affected abstract
VIM nodes, whose orchestrators over lower level resource abstractions
receive this delay budget as input end-to-end requirements between
their inter-domain endpoints (SAPs). See the input service graph seg
ments for Edge VIM1 and Cloud VIM5 in Fig. 5 on their respective ser
vice graph segments. This approach provides the multi-layer support of
guaranteed end-to-end path delays over a unified abstract interface.

4. Proof of concept prototypes

We have implemented both architecture options as proof-of-concept
prototypes. The main components and relevant implementation details
are summarized in this section.

4.1. Extended OpenStack

As today’s one of the most widely deployed open-source VIM is
OpenStack, we target that platform. Making use of the previously pre
sented DARK algorithm (see Sec. 3.1), we extend OpenStack’s scheduler
algorithm to turn it into a network-aware resource orchestrator. The key
features of this approach are also demonstrated in Szalay et al. (2019). In
addition, the code has been released as open-source (DARK).

On the one hand, OpenStack is a cloud computing platform, used as
the operating system of both private and public clouds. It provides
Infrastructure as a Service (IaaS) and it is responsible for the manage
ment of large pools of compute, storage and networking resources. Many
loosely coupled components are developed as independent projects
where the components are communicating with each other through
well-defined REST APIs (Logical architecture of Openstack). On the
other hand, our DARK algorithm maps service function chains to an
internal topology, which defines the exact resources where the virtual
service components should be executed. As a proof-of-concept, we
replace the default nova-scheduler of OpenStack with our own algorithm
in order to support network-aware VNF placement. This prototype is
also able to run automated measurements to determine physical
network characteristics. In this section, the key elements and imple
mentation challenges are described.

An example setup is shown in Fig. 6. All compute nodes are
controlled by the same OpenStack controller. DARK creates an abstract
model of the physical infrastructure, which contains a delay matrix and
a resource graph. The delay matrix defines delay between all node pairs.
The resource graph includes all infrastructure components, i.e., nodes,
links, clusters. The orchestrator algorithm maintains this abstract model
and processes the incoming service requests.

4.1.1. Network status measurement
Since currently OpenStack does not provide any network related

metrics, it cannot take them into account during the orchestration pro
cess. To solve this problem, we implemented a measurement method
which is conform with our previously introduced network model. Our

tool is based on VMTP (VMTP) which is a data path performance mea
surement module for OpenStack. It performs automatic measurements
between the different virtual networks, but can also be used to bench
mark native hosts. It connects to the given nodes via SSH, executes the
measurements by using the selected protocols (TCP, UDP, ICMP), then
returns the result to the management server.

Each OpenStack compute host in our reference cloud is configured to
belong to one custom Availability Zone. An Availability Zone may
represent an edge cluster or a cloud according to our terminology. As we
assume the servers located in the same cluster are deployed physically
close to each other (e.g., in the same rack), it is enough to measure the
latency and bandwidth values between 1 and 1 randomly selected
servers in each zone. By applying this method we can construct the delay
and bandwidth matrices that describe the parameters of the underlying
physical network.

Furthermore, through the OpenStack API we also collect the avail
able compute node resources (CPU, RAM, storage) from each hyper
visor. From the gathered information, we can build up the resource
graph that contains compute resources extended with the networking
related features.

4.1.2. OpenStack scheduler algorithm and modifications
OpenStack’s physical resource orchestrator component is Nova. It

uses its own filter scheduler for filtering and weighting in order to make
informed decisions where a new instance should be created. During the
VM placement nova-scheduler iterates over all compute nodes, evaluates
each of them against a set of filters. The list of resulting host is sorted by
the administrator-defined weights. This default filtering operation
cannot deploy our virtual services properly because there is no standard
filter class that tackles the network resources (delay, bandwidth) be
tween infrastructure nodes. Although with Nova API it is possible to
deploy a VM on a manually specified host. In our prototype, we use this
feature for deploying the VNFs on the host given by our resource
orchestrator algorithm.

The next step in the prototype’s workflow is ensuring correct traffic
steering. OpenStack officially supports service chaining since its release
Pike, i.e., DARK can be applied since 2017. Network traffic steering with
Neutron port chains is provided by the networking-sfc (OpenStack Ser
vice Function Chaining) module. Our code can use Neutron API to create
an ingress and an egress port for each VM. These ports are grouped into
port pairs by the owner VM. The port pairs are grouped into Neutron
port pair groups by the virtual link connections. A port chain consists of
a set of Neutron port pair groups to define the sequence of service
functions. These Neutron objects make it possible to deploy our traffic
steering model for service chaining that uses only Neutron ports.

4.1.3. Scheduling SFCs with OpenStack Heat
Heat service is the main orchestration service in OpenStack. It im

plements an upper layer engine to launch multiple virtual resources
based on templates in the form of text files. In a Heat Orchestration
Template one can easily define resources to be deployed. Templates may
also describe the relationships between resources, e.g., which port is
connected to which instance. This enables Heat to call the proper
OpenStack service APIs to create all resources in the correct order to
launch an application.

Besides the direct Nova and Neutron API calls, DARK is able to use
Heat API. We convert our SFCs into Heat templates where each
component in the chain is defined as Heat resource such as instance,
port-pair, port-pair-group, port-chain. In that case if a VNF instance is
already present in OpenStack, DARK does not deploy the instance again,
it invokes the instance with its id in the template.

4.1.4. Challenges and limitations of OpenStack
One of the limitations of OpenStack stems from the heavy-weight

virtualization technique used when VNFs are implemented as VMs.
Our single provider setups based on DARK use OpenStack to manage Fig. 6. Orchestrating OpenStack resources with DARK.

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

8

VNFs as VMs in both edge clusters and in cloud data centers. Therefore,
the deployment time of the services and VNF startup times are expected
to be much larger compared to other scenarios using software con
tainers. However, virtual machines can provide better isolation among
the tenants.

If the latency is too high between the controller and the compute
nodes, then the controller cannot execute the commands properly on
compute nodes. We conducted several experiments with emulated delay
between the nodes in order to reveal the performance characteristics in
such scenarios. The experiments confirmed that OpenStack compute
service is able to work in distributed environments when we have non-
negligible delays among the nodes. We could successfully deploy VMs in
extreme scenarios where the latency between the controller and the
compute node was 10 s. Of course, the spawning method, i.e., starting
VM into active state, took a few minutes.

Our orchestrator algorithm in DARK considers the possibility of
migrating VNFs between compute nodes. Therefore, we implemented
the migration API calls in our prototype code. Migrating VMs between
compute nodes is not trivial if there are different types of CPUs in the
compute nodes. In order to ensure that migration works correctly, we
have to make some slight modifications in Nova’s configuration files to
solve the issue. For instance, we set virtualization type to Qemu instead
of KVM on all compute servers. Note that to the best of our knowledge,
there are no solutions to live migrate VMs between different OpenStack
clouds, another important reason for federating computing clouds and
edge clusters under one common VIM. Furthermore, as only one
controller is needed in this case, our proposed setup does not take
hardware resources from the compute nodes in the edge domains with
limited capacity.

4.2. Multi-layer orchestration system

In Vaishnavi et al. (2018) and EU H2020 5G Exchange project, we
proposed a general purpose multi-domain orchestration system for
future 5G networks. Here, we adopt the main elements related to
resource orchestration and adjust those to IoT applications and edge
cloud infrastructures.

4.2.1. Multi-domain resource orchestrator
Our Resource Orchestrator (RO) encompasses and coordinates mul

tiple components as it is shown in Fig. 7a. In general, it is responsible for
exposing different virtual resource views upwards and satisfying service
deployment requests. The requests are expressed on the high-level vir
tual views (Resource Slices) and mapped onto the full domain view
which encompasses the underlying resources and topologies. In Fig. 7a,
green boxes correspond to resource views, while red boxes indicate
orchestration or control related elements. During the orchestration
workflow, RO engine invokes the embedding algorithm module,
MORCH, which performs the mapping of the service requests to the
available resources according to the configured policies. The result
describing the full deployment is then sent to the Technology Adaptation
component. It provides a domain-agnostic resource abstraction and
virtualization for different resources, technologies or administrative
domains. The recurring resource control interface is denoted by I-RC,
which is built on the information model presented in Sec. 4.2.2. As we
use the same interface at north and south, a recursive orchestration hi
erarchy can be constructed. The underlying entity can be either a
domain orchestrator or another multi-domain orchestrator aggregating
different domains.

Slicer is an integrated part of the RO and its role is threefold: i) it
introduces multi-tenancy by configurable northbound views corre
sponding to consumers; ii) it enforces policies with regards to slice to
resource mapping, e.g., if a consumer is limited to a pool of domain
resources, then these attributes are set before calling the embedding
function; iii) it enforces operational policies with respect to consumer-to-
consumer sharing of service instances.

We have implemented our embedding algorithm, MORCH, with all
of its features which are presented in Sec. 3.2. MORCH works on the
abstract resource view, which is gathered from the underlying orches
trators and constructed on-the-fly (For example, in Fig. 5, NFVO con
structs the abstract resource model based on the information gathered
from e.g., Edge VIM1 and Cloud VIM5). In case a failure occurs in the
orchestration procedure on any abstraction layer, the embedding algo
rithm supports the framework by finding an alternative solution on its
resource view respecting all of the original service requirements. This
trial-and-error mechanism concludes by receiving and propagating
positive service embedding results from the lowest (physical) layer
orchestrators.

4.2.2. Information model and the resource control API
Our information model is a central element which is used at the

recurring resource control interfaces (I-RC). This model enables the
multi-layer (and recursive) operation by abstracting both i) the bottom-
up network of compute resources and function capabilities, and ii) the
top-down view of control over the virtualized infrastructure. From
general aspects, our model is similar to ETSI’s NFV MANO data models
(Network Functions Virtualisation, 2014), however, it extends that in
multiple ways in order to enable multi-operator scenarios. For example,
our model supports the abstraction of an arbitrary topology of resources
and capabilities, in addition, we introduced the notion of typed VNFs,
and our model allows full recursion, i.e., the northbound and south
bound representations are the same for resource orchestrator
components.

We designed an object-oriented information model, a simplified

Fig. 7. Software architecture and information model of our proof-of-concept
multi-domain orchestrator.

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

9

version of which is shown in Fig. 7b. On the one hand, the model is
capable of describing an arbitrary topology of resources and capabilities.
This information corresponds to the resource view exposed by an
orchestrator towards an upper level entity. On the other hand, services
(more specifically, service function chains) can be formed as allocation
requests defined on the given (northbound) resource view. The task of
service embedding in any given layer is analogous to match the resource
requests from the northbound topology to the southbound topology of
resources and capabilities.

A node represents either an abstraction of node resources and capa
bilities or a VNF allocated on a node. The former type of nodes is referred
to as Big Switch with Big Software (BiS-BiS). Node objects have ports
representing connection points; links connecting ports of different nodes
define abstracted physical interconnection; links interconnecting ports
of the same node, i.e., internal links, capture the aggregation for a to
pology, e.g., if a domain of 10 MPLS switches are aggregated into a
single node, then the external ports of the MPLS domain will appear in
the abstract node with internal links that characterize the edge-to-edge
LSPs, like latency, bandwidth, QoS class, etc. In order to allow for
warding control for nodes, flow entries can be defined: we use port -
match - action sets following the SDN design principle, but we support
various technology specific mappings, as well. The flow rules may
include i) matching of input port, abstract tags or other technology
specific header fields, ii) actions such as output to port, push/pop ab
stract tags or any other technology specific packet manipulation. Basic
life-cycle management operations are contained in the status field of
each node, such as create, start, stop, and pause. BiS-BiS nodes can be
connected to each other representing direct or logical connectivity be
tween the corresponding ports. Service Access Points (SAPs) represent
external connections where customers can be attached to the system.

4.2.3. OpenStack Domain Orchestrator
In order to evaluate our concept in realistic scenarios, the adaption to

today’s VIMs is crucial. We have developed a dedicated library released
as open-source (UNIFY virtualizer library) supporting the implementa
tion of I-RC interface onto different VIMs.

As OpenStack is the most widely used open-source cloud “operating
system”, we integrated it in our framework. In Fig. 8, two OpenStack
Domain Orchestrators (ODO) are shown with their main components
and their managed OpenStack environments. ODO exposes a north
bound interface, which is used to interact with upper layer orchestrators
following the information model presented in Sec. 4.2.2. The resource
orchestrator module parses the given configuration files, maintains the
current topology and the database of supported VNFs. The adapter li
brary provides the necessary modules and helper functions. ODO man
ages OpenStack via its REST API.

ODO currently supports two operation modes. Fig. 8 shows the dif
ferences between these modes, and also the connection between two
OpenStack domains with different modes. The first one is an SDN

compatible mode, which can handle requests containing VNFs con
nected by SDN flow rules. In Fig. 8 the domain on the left hand side
represents this SDN compatible operation. The key requirement inside
an SDN network that all of the VNFs should contain a wrapper function
with an included Open vSwitch. This wrapper module allows handling
control plane messages coming from the orchestrator destined to the
VNF. Furthermore, the wrapper creates VXLAN tunnel endpoints and
virtual interfaces in the deployed instances. In our implementation, all
of the VNFs running in this scenario use a shared Neutron network,
while their traffic is separated by the VXLAN tunnels. Using the SDN
compatible operation mode, we need a special VM called “central_VM”,
which is responsible for handling internal and external data plane con
nections. All of the data plane flows go through the central_VM, where
the traffic is aggregated by Open vSwitch flow rules. When the ODO
starts, it checks whether there is any central_VM running in the managed
domain.

The other operation type of ODO supports only “legacy IP” network
connections. In Fig. 8 the domain on the right hand side represents this
kind of operation, where the VNFs are deployed as simple VMs with no
extra functions. When the orchestrator deploys a VM in this type of
domain, it creates as many Neutron networks as required to fulfill the
VNF’s interface constraints. Each Neutron network is connected to at
least one router to provide the connection between the deployed VNFs.

As shown in Fig. 8, we have implemented a solution to interconnect
legacy IP domains with SDN domains. SDN traffic is represented with
light blue color, while legacy IP traffic is depicted with grey. This so
lution assumes BGP-based IP VPN networks between domains realized
by the BagPipe driver. The BaGPipe driver for the BGPVPN service is
designed to work together with the Open vSwitch ML2 mechanism
driver. It relies on the use of the bagpipe-bgp BGP VPN implementation
on all compute nodes and the MPLS compatibility of Open vSwitch. BGP
VPN is deployed and managed by domain operators, in particular to
manage Route Target identifiers that control the traffic isolation be
tween different VPN networks. In our multi-domain system, for the
referred interconnection, both OpenStack domains must have Neutron
routers associated to at least one BGP VPN network. In the SDN domain,
there is a special VM called proxy_VM, which makes the traffic encap
sulation and decapsulation between the two networks. On the SDN side,
the proxy_VM has VXLAN tunnel endpoints, while on the legacy IP - BGP
VPN side, this instance is connected to at least one router associated to
the BGP VPN network.

4.2.4. Docker Domain Orchestrator
Docker is another important VIM to be adapted, which manages

light-weight containers instead of VMs. The architecture of our imple
mented Docker Domain Orchestrator (DDO) is shown in Fig. 9. The high-
level software architecture is similar to the previous one, however there
are some key differences in the implementation. DDO uses a slicer
module to simultaneously manage multiple resource and network slices.

Fig. 8. OpenStack Domain Orchestrator (ODO): connecting IP and SDN-
compatible OpenStack domains. Fig. 9. The architecture of Docker Domain Orchestrator.

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

10

Obviously, the domain adapter uses different API calls on Docker
domain, than the ODO uses on OpenStack. The Docker domains have the
same number of Open vSwitch as the number of created slices. These
Open vSwitches handle the SDN network flows inside the domains,
which are realized by VXLAN tunnels, like in our OpenStack solution.
The Docker API calls are responsible for the containerized VNF
deployment.

4.2.5. SDN and legacy IP Network domains
We implemented an SDN Orchestrator (SDNO), which is capable of

managing traffic forwarding rules in OpenFlow networks, without the
generic capability to run VNFs. However, functions that can be realized
with OpenFlow rules, e.g., a traffic splitter/duplicator or an IP router,
can be placed into such a domain. We use SDNO both in virtual (Open
vSwitch) and hardware based OpenFlow domains.

We use technology specific adaptation to implement end-to-end
connectivity over domains with different network service capabilities.
Such adaptations are implemented in a network service specific
orchestration component. For example, for IP VPN across IP/MPLS and
SDN networks, the IP specific component manages IP/MPLS BGP VPN
specific parameters, configures static routes over the SDN domain and
stitches the two domains together by injecting routing information of
the SDN domain into BGP at the stitching point.

5. Evaluation

In this section, we evaluate the performance and scalability charac
teristics of our proposed orchestration systems. First, we define a com
mon set of experiments following the general structure of the envisioned
application presented in Sec. 2. Second, the scalability properties of the
embedding engines and the overall orchestration processes are analyzed
in terms of the number of clients and operated edge domains. We focus
on control plane operations as the behavior of the data plane compo
nents is independent from the orchestration system.

5.1. Description of the experiments

In order to conduct similar experiments with the two distinct
orchestration systems, a common set of scenarios are defined in a gen
eral format. Here, we use the BiS-BiS representation introduced in Sec.
4.2.2 to describe topologies, network and cloud resources and also the
service requests. These data models are converted and adjusted to the
input formats required by the orchestrators, respectively.

The bottom part of Fig. 10 shows the general structure of our
distributed cloud (and edge) resources and the topology connecting
them. The core network, which consists of four transport nodes

(switches) connected in full-mesh, is responsible for connecting the
central data center nodes with an arbitrary number of edge domains.
The available cloud resources (CPU and memory), which could repre
sent either private or public cloud resources, are divided into four BiS-
BiS nodes, each of them is connected to an associated core switch.
Edge domains are also represented as standalone BiS-BiS nodes with
limited amount of resources and with dedicated SAP access points,
respectively. The total number of edge domains is determined by the
given test scenario and they are uniquely distributed among the core
switches. Each virtual link is characterized by its latency and bandwidth
properties (generated randomly), while all the resource nodes addi
tionally specify the types of supported VNFs, i.e., the set of VNFs which
can be mapped on and deployed into the related domains.

Our service requests used in the experiments are illustrated in the
upper part of Fig. 10. Generated services consist of chains of connected
VNFs, which provide the alerting functionality for one car/client. Each
VNF specifies the type of realized functionality and the required amount
of CPU and memory, while the virtual links in the service chains can
define optional latency constraints (Furthermore, end-to-end latency
requirements can also be specified for arbitrary paths in the graph). In
our experiments, OREC (and optionally PRED) functions are restricted to
be placed close to the clients/SAPs at the edge of the topology. In one
service chain there is only a single instance of PRED and STAT VNFs but
the number of OREC functions is randomized within a predefined range.
AGGR functions along with the single STAT are shared between the
chains forming a balanced tree which size fits to the number of chains.
The service chains in one test request are uniformly distributed among
the edge SAPs.

To perform large scale control plane experiments, we generated
multiple service requests along with the related resource topology for
each test scenario. The setups are based on increasing number of edge
domains and service chains, which correspond to the number of wireless
transmitters at the network edge and to the number of clients/cars that
need to be served. As we focus on control plane operations, in most
cases, the data plane of the underlying domains and VIMs are emulated.
However, the deployment characteristics of our VIM implementations,
such as Docker and OpenStack, are also analyzed based on small scale
tests investigating the overhead of VNF launching and the configuration
of traffic steering rules.

As Open Source MANO (OSM) (Open Source MANO) is one of the
most prominent, production-quality orchestration system for NFV-based
network services and it is released as open source, we use it as a baseline
in our performance evaluation. However, OSM does not support any
delay requirements in the service description and it does not take the
latency characteristics of the underlying networks into account, its
mapping procedure can be considered as a baseline for the control plane
operation. Therefore, we constructed the simplified version of our ser
vice requests described in OSM’s format, i.e., the complexity (number of
constituent VNFs) and the structure (links among the VNFs) of the ser
vices are the same but the delay constraints are excluded, and we con
ducted experiments with OSM in the same environment. Here, we focus
on the mapping phase of OSM’s operation because in this scenario, its
deployment engine calls the same OpenStack APIs which are used by our
prototypes, thus the deployment times are similar.

5.2. OpenStack experiments with DARK extension

We set up a dedicated, tailor-made OpenStack cluster which supports
large scale experiments mainly addressing the control plane perfor
mance. Each compute node and the controller are operated within
distinct Docker containers spread across three physical servers. A dedi
cated server hosts the controller node container, while on the other two
machines, 65 compute node containers are launched per server as cen
tral cloud nodes or edge nodes. The latency and bandwidth parameters
are emulated in our environment by tc (Linux Traffic Control). Each
server has the following technical specification: Intel(R) Xeon(R) CPU

Fig. 10. Investigated scenarios: test topologies with cloud and edge resources
(bottom), service requests (top).

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

11

E5-2620 0 @ 2.00 GHz, 62 GB RAM. All of the compute nodes are
deployed with fake Nova drivers, which means that VM actions, such as
creation, launch, stop or getting diagnostic information, bypass the
hypervisor which manages only the control plane messages. In order to
enable experiments in such scale, several tweaks had to be applied. First,
we had to increase the number of allowed connections to the MySQL
server because some of the experiments contain thousands of service
requests. OpenStack stores all information on its components (including
VMs, ports, port-chains, etc.) in the controller node’s MySQL database
which is maintained by several internal services. One can easily see that
the number of database connections is directly proportional to the
number of instantiated components. Second, a similar approach was
required to guarantee the proper operation of the message queue
handler, i.e., RabbitMQ, and the maximum number of open file de
scriptors had to be increased.

During the experiments, DARK was running on the same physical
host as the OpenStack controller. DARK operates on top of the regular
OpenStack services and here, we used the Heat API to physically realize
the calculated deployments. As DARK operates with chains as service
request inputs (see Sec.3.1), first we transform the test requests to chains
in our experiments. During the transformation we iterate through all the
paths in the original request starting from the SAPs. As the trans
formation is finished, all the SFCs contain all the original service links
once. A VNF may appear multiple times in the SFC set, however, DARK
algorithm does not deploy the VNF again but it deploys only the un
processed link between its two endpoints.

Fig. 11 presents the overall orchestration times of the service de
ployments with extended OpenStack for a selected number of served
cars and managed edge clusters. In the figures, the runtimes of the
different orchestration steps (mapping, processing, deployment) are
shown in terms of increasing number of edge clusters (Fig. 11a) and
increasing number of clients (Fig. 11b), respectively. We opt to use
exponentially increasing number of edges and clients in order to cover a
wide range of scenarios with a feasible number of experiments. Mapping
is the key process of the orchestration invoking the DARK algorithm,

while the processing time includes the transformation of the result of the
mapping algorithm to the corresponding Heat template. The Heat ser
vice sends a callback message when it verified the request and sends the
proper low-level requests, e.g., VM instantiation, port creation, port-
chain creation, to other OpenStack services. The deployment time gives
the elapsed time between the template transformation and the time
when the last component of the SFC is created.

The results confirm the good scaling characteristics of the mapping
algorithm. Both in network size and number of clients, the computa
tional complexity is polynomial (near to linear in the analyzed range)
which stems from the design of our simple greedy heuristic. Even in case
of the extreme scenario including 512 clients and 128 edge domains, the
runtime of the mapping algorithm is around 1000s and the overall
orchestration time is mainly determined by the deployment phase
(around 5000s). This holds for all other experiments, i.e., the entire time
needed to deploy the SFCs is mostly affected by the internal operations
of OpenStack. In addition, the processing time can always be ignored
comparing to other phases as the conversion between the data structures
is not a complex task. As a baseline, the performance of the mapping
process of OSM is also shown in Fig. 11b. Obviously, DARK needs more
time to solve a more complex mapping task (taking also the delay con
straints into consideration) but its performance is comparable to the
baseline.

More realistic operation regimes are evaluated based on simulations
with the algorithm (without OpenStack) and the main results are shown
in Fig. 12. Here, only the running time of the mapping algorithm is
evaluated for a diverse set of scenarios. We present the mapping time
results with increasing number of edge clusters in Fig. 12a and with
increasing number of clients in Fig. 12b. As both plots of Fig. 12 show,
the number of edge clusters has less effect on the runtime of the algo
rithm than the number of clients. This behavior can be explained by the
online operation of DARK, which means that the service requests are
received and processed sequentially. Therefore, DARK cannot place each
component of the full service in one step rather a gradual embedding
method is realized. In case of large requests, with the increasing number
of already deployed service functions and VMs, the chance of migration

Fig. 11. Detailed DARK orchestration times of large scale experiments in terms
of increasing number of edge clusters (top) and served cars (bottom).

Fig. 12. Scalability characteristics of the DARK mapping algorithm.

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

12

also increases. Migration is one of the most time-consuming operation
phase and it gets worse when the topology becomes saturated which
results in increased overall runtime. In Fig. 12a, a relatively poor per
formance can be observed for the use-cases with 1024 clients. For
example, if we have 128 edge clusters in the underlying infrastructure,
the orchestration time is around 3000s, which seems unsatisfactory for
the first sight. However, DARK received more than 3000 service requests
in this scenario, thus the average runtime for a service request is less
than 1s, which we consider acceptable. It is worth noting that in the
presented scenarios, we fed the system with a single batch request
containing all users’ services. It can be considered as a worst-case sce
nario because in a more realistic operation mode, customers send their
requests after each other distributed in time. Therefore, the per-user
processing time will be under a few seconds and it is not necessary to
wait till the end of the deployment of all others’ service components.

The good scaling properties (polynomial complexity) of DARK are
confirmed by the experiments and even for the most complex setup,
including 1024 clients and around 3800 VNFs, the average mapping
time of one user’s service remains under 1s. Although the total mapping
time seems large in Figs. 12 and 11 indicates that the bottleneck of
realizing complex services, encompassing an extreme number of VNFs,
would be the deployment process of OpenStack. Figs. 11 and 12 also
show that the number of clients and the complexity of the services
(number of VNFs) have higher impact on the deployment time,
including both the mapping and deployment phases. We can conclude
that DARK can be a valid option for single-provider setups serving a few
hundreds of customers over an infrastructure including even 100 edge
domains.

5.3. Multi-layer orchestration system based on MORCH

In our multi-layer experiments, we address similar resource domains
encompassing the same amount of compute and network capacity as it
was configured for DARK scenarios. The main difference here is in the
control plane, more specifically, a dedicated control plane hierarchy is

constructed on top of the lower layer resources as it is presented in Sec.
3.2. On the one hand, we have a top-level multi-domain resource
orchestrator running MORCH. On the other hand, domain orchestrators
are in charge of controlling lower level compute and network resources
and exposing abstract resource views towards the upper level multi-
domain orchestrator. Instead of real domain orchestrators (presented
in Sec. 4.2.3 and Sec. 4.2.4), we use an emulator implementing the same
northbound API and the same control plane operations (Actually, the
emulator inherited the software modules from ODO and DDO). By these
means, the performance of the multi-layer control plane workflows and
API overheads can be evaluated. The behaviors of the implemented
domain orchestrators are highlighted briefly at the end of the section.

In the analyzed test scenarios, we had a multi-domain orchestrator,
an SDNO controlling the core network (including 4 switches), 4 in
stances of ODO managing the central cloud domains, and configurable
number of DDOs managing the distinct edge domains. The test cases
were conducted on platform with Intel Xeon CPU E5-2640 v3 @ 2.60
GHz, 16 GB RAM and each software instance was pinned to one vCPU
core to avoid undesired race conditions.

Fig. 13 presents the overall orchestration times and relevant phases
of the operations measured at the multi-domain orchestrator for a
selected number of served cars and managed edge domains. In Fig. 13a,
the scalability characteristics of the different orchestration steps are
shown in terms of increasing number of edge domains, while Fig. 13b
presents the same results in the dimension of served clients. The plots
show that even in case of 100+ edge networks and 1000+ clients, the
pure mapping time remains considerably under the time of additional
processing and conversion tasks, such as calculating the deployable part
of the orchestrated service for a managed domain, converting the in
ternal representation into the appropriate data exchange format and
other domain provisioning tasks. Moreover, the baseline experiments
with OSM also confirm the efficient operation of the mapping algorithm
of MORCH. Our algorithm, solving a more complex task than OSM,
exhibits almost the same performance as OSM’s mapping engine (The
largest scenario is rejected by OSM because it exceeds the maximum
service size allowed by the system). Here, the deployment time contains

Fig. 13. Detailed orchestration times of large scale experiments in terms of
increasing number of edge domains (top) and served cars (bottom).

Fig. 14. Scalability characteristics of MORCH mapping algorithm.

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

13

only the VIM’s control plane overhead gained from our emulator
(without real data plane operations) and the delay caused by the
registration of the deployment results at the multi-domain orchestrator’s
side. The results show that the control plane overhead at the VIMs added
by our novel northbound API is negligible compared to the mapping and
processing phases. The mapping time and also the overall orchestration
time show polynomial scaling characteristics both in the number of
clients and edge domains which are in line with the analytical results
calculated for the general algorithm in Sonkoly et al. (2018).

Fig. 14 depicts the detailed evaluation of the runtime of the core
embedding algorithm for a wide range of relevant scenarios based on
simulations (without underlying domain orchestrators). The good
scaling properties of the algorithm are confirmed for the analyzed range.
The test results also show that the mean runtimes, up to 32 edges and up
to 512 clients, are relatively close to each other, anticipating efficient
operation. Slight randomization in service chains introduced minor
difference in running times as the measured relative standard deviations
fell below 4% in all performed test cases.

Finally, the performance of the domain orchestrators is investigated
focusing on the comparison of the regular operation and the overhead
introduced by our northbound API extension. As an example, a given set
of scenarios is picked up from the previous multi-domain experiments
(topology consisting of 32 edge domains) and the behavior of a selected
Docker Domain Orchestrator is analyzed. Here, we repeated the same
experiments but one of the emulators was replaced by a DDO instance
with configured data plane (with physical interface bindings and
VXLAN-based virtual links). Fig. 15 shows the impact of increasing
number of clients on the deployment time (plotted in log scale). The

number of clients indicates the size of the original request sent to the top
level orchestrator. As the clients are distributed randomly among the
edge domains, the targeted DDO served only 1/32 portion of the cus
tomers in average. Fig. 15 depicts two phases of DDO operation and as a
reference, plots the performance of our emulator (green curve) indi
cating the pure control plane operation. The blue curve corresponds to
Docker-related tasks including the communication overhead of the
Docker daemon, the container initialization time and also our control
plane extensions. While the orange curve shows the flow rule insertion
time required to configure the appropriate traffic steering rules. The
results indicate that the overhead introduced by our northbound API
extension is smaller in orders of magnitudes than the basic operations of
Docker. More specifically, the deployment time is mainly determined by
the VIM itself (Docker-related functions).

Our other domain orchestrator, namely ODO, manages OpenStack.
As it is a much more complex VIM than Docker, we expect that the
overhead caused by our API extension is not significant comparing to the
general operations. We confirm this expectation via simple experiments
which are capable of providing a good insight into the system’s
behavior. In Table 1, the runtimes of two different operational phases
(and the overall performance) are shown for two different service

requests. The first phase corresponding to our control plane API
implementation lasts till the VMs are requested from OpenStack. The
second phase, which is responsible for the deployment, includes the pure
VM instantiation and the OVS API calls to the wrapper functions (Here,
we use ODO in SDN compatibility mode). One can see that according to
the expectations, the deployment times are the significant components
mainly affecting the overall performance for both scenarios. More in
formation and further experiments with ODO can be found in Gerő et al.
(2017).

5.4. Discussion

The ultimate goals of the two proposed solutions are similar, how
ever, for different scenarios, different options can be a better fit. Here,
we summarize the pros and cons of our proposals and compare them
from multiple aspects.

On the one hand, OpenStack with DARK controller is a simple system
and could be a good choice for an operator owning all the resources in a
smaller domain. If she has an operational OpenStack with central cloud
resources, then extending it with novel edge domains is quite trivial:
additional compute nodes should be configured on-site and connected to
the center. In addition, DARK controller has to be installed, e.g., on the
master node. This solution scales well for a moderate number of edge
nodes, however, when a service request consists of too many VNFs (more
than 1000), the deployment time can be unacceptable. This stems from
the internal operation of OpenStack. If we add new services gradually
and not in “batch mode”, this issue can be mitigated.

On the other hand, the multi-layer orchestration system introduces
overhead in certain dimensions. First, the available VIMs have to be
extended with a novel northbound API and the corresponding control
plane mechanisms. Moreover, the same API must be used in all domains.
Second, a dedicated component, i.e., the multi-domain resource
orchestrator, has to be installed and configured in the system. If multiple
providers are involved in the service provisioning, this approach has to
be applied. However, this is a feasible option for single operator sce
narios, as well. Based on the inherent service decomposition and
distributed operation, the scalability characteristics of the multi-layer
orchestration system are much better in terms of network size and ser
vice complexity. In case of large networks with thousands of users or
global operators, this is the reasonable approach.

6. Related work

We categorize the vast body of research related to the scope of our
work into four groups. We first list the standardization activities, com
mercial solutions and important research efforts tackling the design of
edge computing systems. Second, narrowing the scope, we collect the
most relevant academic papers that describe work aiming at the scalable
and reliable resource orchestration and/or service management of such
systems, highlighting those that pay special attention to network-related
requirements. Third, related to the latter, we give an overview on the
literature of embedding and scheduling algorithms. Finally, prior art of
the implementation aspects of integrating VIMs in the orchestration
platforms is collected.

6.1. Standardization and commercial edge solutions

Many standardization bodies, academia and industries such as

Fig. 15. Performance of a single Docker Domain Orchestrator compared to the
pure control plane operations implemented by the emulator.

Table 1
Performance of ODO: simple experiments.

VNFs in the
service

Control plane
operation (sec)

Deployment time
(sec)

Overall time
(sec)

1 VNF 12.65 79.49 92.62
10 VNF 86.16 807.2 893.4

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

14

Institute of Electrical and Electronics Engineers (IEEE) and European
Telecommunications Standards Institute (ETSI) lead activities on edge
networks to identify standardization opportunities and gaps. In the
United States, these activities are managed by the National Science
Foundation (NSF) Future Internet Architecture initiative and in Europe,
they are lead under the European Union Framework programs H2020
and Horizon Europe.

ETSI is one of the key players in setting telecommunication stan
dards; their purpose is to create a standardized and open environment
for edge computing. ETSI coined the term Mobile Edge Computing
(MEC) (Mobile-Edge Computing, 2015) in December 2014 with a white
paper authored by Huawei, IBM, Intel, Nokia, NTT DOCOMO, and
Vodafone, defining the aim to shift storage, processing, and control to
the edge of the network, specifically to Radio Access Networks (RAN). In
MEC, third-party Application Service Providers are offered cloud
computing capabilities at the edge of the network with strong focus on
mobile scenarios. However, nowadays MEC support is provided for both
fixed and mobile networks. IEEE also started a 5G Working Group (IEEE
5G Initiative, 2017) and showcased their vision and goals in a white
paper (IEEE 5G Technical Community, 2017).

In 2015 the Open Edge Computing project (Open Edge Computing)
was founded with special emphasis on prototyping applications with
edge computing. In November 2015 Open Fog Consortium (OpenFog)
was created (ETSI and OpenFog Consortium) by ARM, Cisco, Dell, Intel,
Microsoft and Princeton University in order to solve the challenges such
as latency, bandwidth and communications of advanced concepts, such
as Tactile Internet, IoT, Artificial Intelligence and Robotics. A group
called IMT-2020 (SG13) was created by ITU Telecommunication Stan
dardization Sector (ITU-T) to identify and study how 5G technologies
will interact in future networks. 5G Americas presented a white paper
(White Paper, 2016) that suggests the 5G requirements in terms of new
protocols and architectures with emphasis on caching, mobility and
latency. Next Generation Mobile Networks (NGMN) states the re
quirements and adoption of edge computing in their white paper
(NGMN 5G White Paper, 2015). The EdgeX Foundry (The Linux Foun
dation Projects) project for IoT edge computing was initiated by Linux
Foundation with the aim to develop an edge computing platform for IoT
ecosystems. However, the approach is strongly focusing on industrial
IoT devices and is limited to microservices. Eurotech presented another
IoT edge computing platform called the Everyware Software Framework
(Eurotech) which supports edge applications for IoT devices. The plat
form is developed on the modular Open Service Gateway initiative
(OSGi).

In addition to standardization bodies, a lot of vendors are working on
the hardware and software solutions of edge computing and future
networking. In this regards, ADLINK technology (ADLINK Technology)
is very active and provides hardware devices with fog computing and
MEC features. A product named SETO-1000 (Extreme Outdoor Server)
was launched by ADLINK which is also a part of the MEC architecture:
SETO-1000 provides mini cloud like facility closer to the users in RAN.
Moreover, ADLINK is active and has many contributions in standardized
bodies such as OpenFog Consortium, Telecom Infra Project (TIP), the
PCI Industrial Computer Manufacturers Group (PICMG), the PXI Sys
tems Alliance (PXISA), Open Compute Project (OCP), ETSI MEC and
Network function virtualization (NFV), and the Standardization Group
for Embedded Technologies (SGET). Advantech (Advantech) also pro
vides hardware solutions such as Packetarium XLc, which is a virtualized
platform for edge computing deployments. Artesyn (Artesyn) designs
hardware for next generation networks and has developed MaxCore
platform for edge computing. The main focus of MaxCore is to enhance
the platform performance in terms of latency and bandwidth for high
dense traffic environments. Interdigital (Interdigital) is also working on
edge computing, SDN and strongly focusing on the research and devel
opment of 5G. Qwilt (Qwilt) offers broadband fixed and wireless ser
vices. Qwilt provides solutions that extend Content Delivery Networks
(CDNs) with the objective of reducing transport cost and making the

content delivery more efficient. For that Open Caching software pro
vides quick access to popular content without requesting any action
from CDNs. Vasona Networks (Vasona Networks) provides solutions to
optimize RAN performance and provides better QoE to mobile operators
while using network resources efficiently. Vasona developed
standard-based platforms for MEC that can cover more than a thousand
cells and can be placed at aggregation points between RAN and core
networks. For the cell level a product named SMART AIR is being
developed that controls the traffic flows at real time. Another product
called SmartVISION is provided by Vasona that offers real-time assis
tance to operators based on historical data and user activity in a cell,
which can be used for planning and designing networks.

Several recent surveys (Shi et al., 2016; Mach and Becvar, 2017;
Taleb et al., 2017a; Pan and McElhannon, 2018) summarize use cases,
fundamental key enabling technologies and orchestration deployment
options of edge computing. In parallel, standardization activities are
ongoing at ETSI (Multi-access Edge Computing, 2019) and at the
OpenFog consortium (OpenFog Reference Architecture for Fog
Computing, 2017), both providing their respective MEC reference ar
chitecture. Various MEC schemes are also proposed from the academia,
specifically designed e.g., for smart city scenarios (Taleb et al., 2017b),
and IoT services (Villari et al., 2016).

6.2. Orchestration systems

There is plenty of NFV orchestration solutions proposed by re
searchers, and many products are available for this purpose. We depict a
summary of the features the most prominent orchestration frameworks
offer in Table 2: we highlight whether the selected orchestration systems
provide the possibility of defining delay constraints for the applications
they schedule, and whether they support multiple domains. These two
features are the ones that distinguish our proposed systems from the
existing frameworks. The one with the most hype around is Kubernetes
(Kubernetes); it manages light-weight hypervisors (Linux Containers;
Docker) typically for the deployment of micro-services into containers.
For big data applications, Apache YARN (Apache Hadoop YARN), Mesos
(Apache Mesos) and Marathon (Marathon) are the most commonly used
technologies in the resource management layer of Hadoop, the de facto
big data framework. These solutions schedule computational resources
for applications with little awareness to network parameters, e.g., they
estimate network bandwidth capacity based on the physical proximity of
two servers. This estimation works well within one data center, though it
fails in a multi-cloud environment. To remedy this shortcoming, place
ment solutions for MapReduce tasks deployed in a geographically
distributed environment propose moving the input data (Ruiz-Alvarez
and Humphrey, 2014; Cavallo et al., 2016; Heintz et al., 2016; Zhang
et al., 2014). In contrast, our solutions also consider the networking
capabilities of the underlying domains.

Besides the control and orchestration frameworks targeting solely IT
resources, integrated architectures and experimental solutions address
the joint control of compute and network resources (Network Functions
Virtualisation, 2014; Open Source MANO; OPEN-O; OPNFV; CORD;
Ciena Blue Planet MDSO; OpenBaton; Tacker; ONAP). Most open source
control and orchestration frameworks are based on the ETSI NFV MANO
specification (Network Functions Virtualisation, 2014) and thanks to

Table 2
Features of existing orchestration systems.

Name Orchestrated entity Delay constraint Multiple domains

Openstack VM – –
Kubernetes Pod – –
YARN job – ✓
Mesos task – –
Marathon container – –
OSM VM – ✓

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

15

their modular architectural design, developers are able to replace each
component to ensure collaboration with third party software. One of the
most prominent implementations is OSM (Open Source MANO) that we
use as baseline in our performance evaluation, described in Sec. 5.

While most of the solutions provide multi-VIM support, the inter-
VIM orchestration feature is rudimentary in each of them. Therefore
Guerzoni et al. (2017), Sun et al. (2018a) and Bhamare et al. (2017)
studied the problem of SFC orchestration across multiple domains
and/or for a multi-cloud setup, and proposed functional architectures
for the end-to-end service management and orchestration plane,
although with slightly different optimization goals in mind, e.g., mini
mizing inter-domain traffic and response time. In Sun et al. (2018b) the
authors proposed an alternative to SFC-based service abstraction, and
for their model, they designed an efficient placement method specif
ically for edge computing topologies. Zanzi et al. (2018) introduced the
concept of MEC broker as an entity exposing administration and man
agement capabilities while handling heterogeneous tenant privileges.
Their orchestration solution optimally allocates requested resources in
compliance with the tenants’ service level agreements. In Sun et al.
(2018a), the virtual links of the service requests describe only band
width demands, while in Bhamare et al. (2017) and Zanzi et al. (2018),
only the maximum delays tolerated by the users are included in the
service level agreements (SLAs). In contrast, our solutions provide
network-aware orchestration over edge and cloud resources taking both
delay and bandwidth requirements into account during the service
deployment. In addition, the solutions presented in Sun et al. (2018a,
2018b) and Bhamare et al. (2017) do not consider migration as an extra
step for better utilization, whereas the mapping process described in
Zanzi et al. (2018) supports VNF migration but based only on delay
information. On the contrary, our VIM extension (DARK) is able to
migrate VNFs for better utilization while taking both bandwidth and
delay characteristics into consideration.

An example for cross-layer service-specific orchestration is shown in
He et al. (2017): the authors proposed an integrated framework that
enables dynamic orchestration of networking, caching, and computing
resources to improve the performance of applications for smart cities.

In contrast to the aforementioned solutions, our multi-layer orches
tration system inherently supports different aspects of multi-domain and
multi-provider scenarios, including techniques for information hiding
and aggregation together with embedding methods resolving end-to-end
constraints.

6.3. Network embedding and task scheduling

Virtual Network Embedding is the process that maps multiple graphs
(representing the services composed by interconnected VNFs) (Németh
et al., 2016) to a common physical infrastructure, represented by a
resource graph. The VNE problem is known to be 𝒩℘-hard (Amaldi
et al., 2016), and it has been addressed by a plethora of research ini
tiatives (Amaldi et al., 2016; Chowdhury et al., 2012; Fuerst et al., 2013;
Bari et al., 2015). Two different approaches emerged for solving the
problem: i) exact solutions that find solution but these can be applied to
limited scale problems only, ii) approximation-based algorithms that
trade the optimal solution for better runtime. Fischer et al. (2013)
summarizes many solutions for both. In the following we describe
selected scheduling methods from prior art that are capable of orches
trating applications consisting of multiple components (e.g., SFC) in an
online manner, i.e., one-by-one as application deployment requests
arrive.

Placing service components into the infrastructure is tackled in Guo
et al. (2018) as a mobile-edge computation offloading problem in
ultra-dense IoT networks: the authors propose a two-tier game-theoretic
greedy offloading scheme. Another approach is examined in Zhu and
Huang (2017) where authors develop a cost-efficient placement method
for mobile edge applications considering availability and confidentiality
requirement by applying affinity- and antiaffinity rules. Another

mathematical problem related to service and resource orchestration is
task scheduling. Alameddine et al. (2019) propose an approach of jointly
deciding on the task offloading (placing tasks to MEC servers) and
scheduling (order of executing them) for IoT devices and applications.
By decomposing the complex joint optimization problem, the authors
achieved improvements in the runtime of scheduling decisions. In
Hassan et al. (2015), researchers study the problem of task offloading
from mobile device to fog nodes to minimize the response time of the
application. They leverage pre-trained Multilayer Perceptron models to
estimate the performance of the tasks, but without considering the
available resources on the fog nodes. Similarly, authors of Skarlat et al.
(2017) and Xiao and Krunz (2017) propose solutions for leveraging edge
resources in a fog environment to provide better service response times.
Although, in both papers the authors apply distributed and cooperative
approaches to achieve efficient resource usage, they only consider
directly connected neighbour nodes for workload propagation. In Bit
tencourt et al. (2017) researchers analyze the scheduling problem by
focusing on how user mobility can influence application performance
and how different scheduling policies can improve execution based on
application characteristics. Authors of Zhang et al. (2019) propose a
latency-aware edge resource orchestration platform over heterogeneous
edge clouds. They support real-time responses to computation-intensive
edge vision applications, completely relying on the Apache Storm
framework.

Similarly to these solutions, by providing a network-aware extension
to VIMs, DARK makes possible to manage both cloud and edge resources
and orchestrate the required services over a geographically scattered
infrastructure. On the other hand, differently from the related works
mentioned above, DARK provides a novel migration mechanism to
ensure the VNF migration within the managed infrastructure. By moving
services, DARK is able to i) optimize the computation costs, ii) maximize
the number of deployed services, and iii) adapt to end user/device
mobility. Our other solution, i.e., MORCH, inherently supports several
features required for multi-domain operations, such as automated res
olution of end-to-end delay constraints, operation on abstract and
limited/aggregated resource views, and a multi-layer, distributed
backtracking mechanism, which are typically not addressed by available
algorithms.

We highlight the capabilities of the discussed research results in
Table 3 from the aspects that constitute the contribution of our proposed
methods to the body of research: involvement of delay constraints in the
scheduling decisions, the ability of managing a large, distributed infra
structure, and the feature of migrating deployed application components
when it is deemed necessary.

6.4. Virtual infrastructure adaptation

In OpenStack the nova-scheduler component is responsible for man
aging computational resources on the hypervisor of each physical host.
The placement strategy applied therein, called filter scheduler

Table 3
Features of scheduling algorithms in related work.

Reference Delay
constraint

Multiple
domains

VM/Pod/VNF
migration

Guo et al. (2018) – ✓ –
Zhu and Huang

(2017)
– – –

Alameddine et al.
(2019)

✓ – –

Hassan et al. (2015) – ✓ –
Skarlat et al. (2017) ✓ ✓ –
Xiao and Krunz

(2017)
✓ ✓ –

Bittencourt et al.
(2017)

✓ ✓ –

Zhang et al. (2019) – – –

B. Sonkoly et al.

Journal of Network and Computer Applications 170 (2020) 102785

16

(OpenStack Nova Filter Scheduler), has several limitations. For one, the
sequential processing of VM requests makes it impossible to define
complex placement constraints that affect more than one instance.
Furthermore, the filtering step currently does not consider any
networking related metrics, which might be a shortcoming in a MEC
infrastructure.

Various extensions to OpenStack were proposed (Scharf et al., 2015;
Sahasrabudhe and Sonawani, 2015) for the support of network-aware
placement of instances. These solutions take into account bandwidth
constraints to and from nodes by keeping track of host-local network
resource allocation. Authors of Lucrezia et al. (2015) introduced a
network-aware scheduler that aimed at optimizing the VM placement
from a networking perspective: they used OpenDayLight (OpenDay
Light) to collect network topology information and to configure traffic
steering with the goal of minimizing the bandwidth utilization of
physical links. Haja et al. (2018) proposed a solution that alleviated the
need for running OpenStack controllers in the lightweight edge, plus it
took into account network aspects that are extremely important in a
resource setup with remote fogs. In contrast to these solutions, DARK
can take both the delay and bandwidth characteristics into consider
ation and in addition, it is able to migrate VNFs to achieve better utili
zation, which is typically not supported by available systems.

Using lightweight container-based virtualization techniques has also
been investigated (Alam et al., 2018; Farris et al., 2017; Xiong et al.,
2018) in order to design modular, scalable, distributed deployments for
highly dynamic service deployment in MEC environments, e.g., by
proactively exploiting service replication, or by ensuring a unified
multi-tenant communication infrastructure between edge and cloud
with fault tolerance and high availability.

7. Conclusion

The strong trend of virtualization has resulted in most online appli
cations being containerized and run in VMs in the cloud instead of being
deployed on bare metal in-house. The progress continues by the spread
of fog and edge computing systems, which together with the advanced
wireless radio technology of 5G and the plethora of smart devices and
sensors of the Internet of Things, will provide the possibility of creating
ultra time-critical online applications.

In this work, we presented two alternatives for the service orches
tration in such distributed edge systems. We propose either to orches
trate the system in a completely flat architecture, or in a hierarchical
recursive manner. The first option assumes that all the infrastructure
islands are controlled by a single manager, i.e., OpenStack, so an
extension is proposed to make it suitable for the distributed edge to
pology. The second option places an extra orchestration component next
to each infrastructure manager, e.g., next to an edge node’s Docker
engine, and organizes them in a multi-layer topology. With both solu
tions our aim is to quickly and efficiently map incoming service
deployment requests to physical resources.

We presented the design choices and implementation caveats in
detail and we showed the performance of both solutions with simulated
and emulated edge infrastructure. In order to evaluate the efficiency of
the proposed solutions, we compared them to a production-quality
orchestration system providing a baseline for a basic set of features.

Credit author statement

Balázs Sonkoly: Conceptualization, Funding acquisition, Method
ology, Project administration, Supervision, Writing - original draft.
Dávid Haja: Investigation, Methodology, Software, Writing - original
draft. Balázs Németh: Investigation, Methodology, Software, Writing -
original draft. Márk Szalay: Investigation, Methodology, Software,
Writing - original draft. János Czentye: Investigation, Methodology,
Software, Writing - original draft. Róbert Szabó: Conceptualization,
Methodology, Software. Rehmat Ullah: Writing - original draft, Writing

- review & editing. Byung-Seo Kim: Funding acquisition, Writing -
original draft, Writing - review & editing. László Toka: Conceptuali
zation, Funding acquisition, Methodology, Supervision, Writing - orig
inal draft.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

Project no. 2018-2.1.17-TÉT-KR-2018-00012 has been implemented
with the support provided from the National Research, Development
and Innovation Fund of Hungary. This research was also supported by
the International Research & Development Program of the National
Research Foundation of Korea (NRF) funded by the Ministry of Science
and ICT, Republic of Korea (No. NRF-2018K1A3A1A39086819).

References

ADLINK Technology [Online]. https://www.adlinktech.com.
Advantech [Online]. https://www.advantech.com.
Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N., Chen, Y., 2018. Orchestration of

microservices for IoT using docker and edge computing. IEEE Commun. Mag. 56 (9),
118–123. https://doi.org/10.1109/MCOM.2018.1701233.

Alameddine, H.A., Sharafeddine, S., Sebbah, S., Ayoubi, S., Assi, C., 2019. Dynamic task
offloading and scheduling for low-latency IoT services in multi-access edge
computing. IEEE J. Sel. Area. Commun. 37 (3), 668–682. https://doi.org/10.1109/
JSAC.2019.2894306.

Amaldi, E., Coniglio, S., Koster, A.M., Tieves, M., 2016. On the computational complexity
of the virtual network embedding problem. Electron. Notes Discrete Math. 52,
213–220. https://doi.org/10.1016/j.endm.2016.03.028.

Apache Hadoop YARN [Online]. https://hadoop.apache.org/docs/current/hadoop-ya
rn/hadoop-yarn-site/YARN.html.

Apache Mesos [Online]. https://mesos.apache.org.
Artesyn [Online]. https://www.artesyn.com.
Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R., 2015. On orchestrating virtual

network functions. In: 2015 11th International Conference on Network and Service
Management (CNSM), pp. 50–56. https://doi.org/10.1109/CNSM.2015.7367338.

Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L., Chan, H.A., 2017. Optimal
virtual network function placement in multi-cloud service function chaining
architecture. Comput. Commun. 102 (C), 1–16. https://doi.org/10.1016/j.
comcom.2017.02.011.

Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M., 2017. Mobility-
aware application scheduling in fog computing. IEEE Cloud Comput. 4 (2), 26–35.
https://doi.org/10.1109/MCC.2017.27.

Cavallo, M., Di Modica, G., Polito, C., Tomarchio, O., 2016. H2F: a hierarchical Hadoop
framework for big data processing in geo-distributed environments. In: 2016 IEEE/
ACM 3rd International Conference on Big Data Computing Applications and
Technologies (BDCAT), pp. 27–35. https://doi.org/10.1145/3006299.3006320.

Chowdhury, M., Rahman, M.R., Boutaba, R., 2012. ViNEYard: virtual network
embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans.
Netw. 20 (1), 206–219. https://doi.org/10.1109/TNET.2011.2159308.

Ciena Blue Planet MDSO [Online]. http://www.blueplanet.com/products/multi-doma
in-service-orchestration.html.

CORD [Online]. https://www.opennetworking.org/cord/.
DARK [Online]. https://github.com/hsnlab/dark.
Docker: a better way to build apps [Online]. https://www.docker.com.
ETSI and OpenFog Consortium collaborate on fog and edge applications [Online]. https

://www.etsi.org/newsroom/news/1216-2017-09-news-etsi-and-openfog-consort
ium-collaborate-on-fog-and-edge-applications.

EU H2020 5G Exchange project [Online]. https://github.com/5GExchange.
Eurotech: Edge Computing Platform [Online]. https://esf.eurotech.com/docs/edge

-computing-platform.
Extreme Outdoor Server. ADLINK Technologies [Online]. https://adlinktech.com/Pro

ducts/Server/Extreme_Outdoor_Server/SETO-1000.
Farris, I., Taleb, T., Iera, A., Flinck, H., 2017. Lightweight service replication for ultra-

short latency applications in mobile edge networks. In: 2017 IEEE International
Conference on Communications (ICC), pp. 1–6. https://doi.org/10.1109/
ICC.2017.7996357.

Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X., 2013. Virtual network
embedding: a survey. IEEE Commun. Surv. Tutor. 15 (4), 1888–1906. https://doi.
org/10.1109/SURV.2013.013013.00155.

Fuerst, C., Schmid, S., Feldmann, A., 2013. Virtual network embedding with collocation:
benefits and limitations of pre-clustering. In: 2013 IEEE 2nd International
Conference on Cloud Networking (CloudNet), pp. 91–98. https://doi.org/10.1109/
CloudNet.2013.6710562.

B. Sonkoly et al.

https://www.adlinktech.com
https://www.advantech.com
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1109/JSAC.2019.2894306
https://doi.org/10.1109/JSAC.2019.2894306
https://doi.org/10.1016/j.endm.2016.03.028
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://mesos.apache.org
https://www.artesyn.com
https://doi.org/10.1109/CNSM.2015.7367338
https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/10.1016/j.comcom.2017.02.011
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1145/3006299.3006320
https://doi.org/10.1109/TNET.2011.2159308
http://www.blueplanet.com/products/multi-domain-service-orchestration.html
http://www.blueplanet.com/products/multi-domain-service-orchestration.html
https://www.opennetworking.org/cord/
https://github.com/hsnlab/dark
https://www.docker.com
https://www.etsi.org/newsroom/news/1216-2017-09-news-etsi-and-openfog-consortium-collaborate-on-fog-and-edge-applications
https://www.etsi.org/newsroom/news/1216-2017-09-news-etsi-and-openfog-consortium-collaborate-on-fog-and-edge-applications
https://www.etsi.org/newsroom/news/1216-2017-09-news-etsi-and-openfog-consortium-collaborate-on-fog-and-edge-applications
https://github.com/5GExchange
https://esf.eurotech.com/docs/edge-computing-platform
https://esf.eurotech.com/docs/edge-computing-platform
https://adlinktech.com/Products/Server/Extreme_Outdoor_Server/SETO-1000
https://adlinktech.com/Products/Server/Extreme_Outdoor_Server/SETO-1000
https://doi.org/10.1109/ICC.2017.7996357
https://doi.org/10.1109/ICC.2017.7996357
https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.1109/CloudNet.2013.6710562
https://doi.org/10.1109/CloudNet.2013.6710562

Journal of Network and Computer Applications 170 (2020) 102785

17

Ger, B., Jocha, D., Szab, R., Czentye, J., Haja, D., Nmeth, B., Sonkoly, B., Szalay, M.,
Toka, L., Cano, C.J.B., Murillo, L.M.C., 2017. The orchestration in 5G exchange a
multi-provider NFV framework for 5G services. In: 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN),
pp. 1–2. https://doi.org/10.1109/nfv-sdn.2017.8169865.

Guerzoni, R., Vaishnavi, I., Perez-Caparros, D., Galis, A., Tusa, F., Monti, P.,
Sganbelluri, A., Biczk, G., Sonkoly, B., Toka, L., Ramos, A., Melin, J., Dugeon, O.,
Cugini, F., Martini, B., Iovanna, P., Giuliani, G., Figueiredo, R., Miguel Contreras-
Murillo, L., Szabo, R., 2017. Analysis of end-to-end multi-domain management and
orchestration frameworks for software defined infrastructures: an architectural
survey. Trans. Emerg. Telecomm. Technol. 28 (4), 1–19. https://doi.org/10.1002/
ett.3103.

Guo, H., Liu, J., Zhang, J., Sun, W., Kato, N., 2018. Mobile-edge computation offloading
for ultradense IoT networks. IEEE Internet Things J. 5 (6), 4977–4988. https://doi.
org/10.1109/JIOT.2018.2838584.

Haja, D., Szab, M., Szalay, M., Nagy, ., Kern, A., Toka, L., Sonkoly, B., 2018. How to
orchestrate a distributed OpenStack. In: IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–2. https://doi.
org/10.1109/INFCOMW.2018.8407014.

Hassan, M.A., Xiao, M., Wei, Q., Chen, S., 2015. Help your mobile applications with fog
computing. In: 2015 12th Annual IEEE International Conference on Sensing,
Communication, and Networking - Workshops (SECON Workshops), pp. 1–6.
https://doi.org/10.1109/SECONW.2015.7328146.

He, Y., Yu, F.R., Zhao, N., Leung, V.C.M., Yin, H., 2017. Software-defined networks with
mobile edge computing and caching for smart cities: a big data deep reinforcement
learning approach. IEEE Commun. Mag. 55 (12), 31–37. https://doi.org/10.1109/
MCOM.2017.1700246.

Heintz, B., Chandra, A., Sitaraman, R.K., Weissman, J., 2016. End-to-End optimization
for geo-distributed MapReduce. IEEE Trans. Cloud Comput. 4 (3), 293–306. https://
doi.org/10.1109/TCC.2014.2355225.

Tech. rep. IEEE 5G and beyond Technology Roadmap White Paper, Oct. 2017. IEEE 5G
Technical Community [Online]. https://futurenetworks.ieee.org/images/files/pd
f/ieee-5g-roadmap-white-paper.pdf.

IEEE 5G Initiative, 2017. IEEE 5G Technology Roadmap [Online]. http://5g.ieee.org/r
oadmap.

Interdigital [Online]. http://www.interdigital.com.
Kubernetes: Production-Grade Container Orchestration [Online]. https://kubernetes.io.
Linux Containers [Online]. https://linuxcontainers.org.
Logical architecture of Openstack [Online]. https://docs.openstack.org/install-guide/get

-started-logical-architecture.html.
Lucrezia, F., Marchetto, G., Risso, F., Vercellone, V., 2015. Introducing network-aware

scheduling capabilities in OpenStack. In: Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft), pp. 1–5. https://doi.org/10.1109/
NETSOFT.2015.7116155.

Mach, P., Becvar, Z., 2017. Mobile edge computing: a survey on architecture and
computation offloading. IEEE Commun. Surv. Tutor. 19 (3), 1628–1656. https://doi.
org/10.1109/COMST.2017.2682318.

Marathon: a container orchestration platform for Mesos and DC/OS [Online]. https://me
sosphere.github.io/marathon.

Mobile-Edge Computing (MEC); Service Scenarios, Nov. 2015. Tech. Rep. DGS/MEC-
IEG004, ETSI, [Online]. https://www.etsi.org/deliver/etsi_gs/MEC-IEG/001
_099/004/01.01.01_60/gs_MEC-IEG004v010101p.pdf.

Multi-access Edge Computing (MEC); Framework and Reference Architecture, Jan. 2019.
Tech. Rep. RGS/MEC-0003v211Arch, ETSI, [Online]. https://www.etsi.org/delive
r/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf.

Nmeth, B., Sonkoly, B., Rost, M., Schmid, S., 2016. Efficient service graph embedding: a
practical approach. In: 2016 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), pp. 19–25. https://doi.org/10.1109/
NFV-SDN.2016.7919470.

Network Functions Virtualisation (NFV); Management and Orchestration, Dec. 2014.
Tech. Rep. DGS/NFV-MAN001, ETSI, [Online]. https://www.etsi.org/deliver/etsi
_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf.

Tech. Rep. v1 NGMN 5G White Paper, Feb. 2015. NGMN Alliance [Online]. https://www
.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf.

ONAP [Online]. https://www.onap.org.
Open Edge Computing [Online]. http://openedgecomputing.org.
OPEN-O [Online]. https://www.open-o.org.
Open Source MANO [Online]. https://osm.etsi.org.
OPNFV [Online]. https://www.opnfv.org.
OpenBaton [Online]. http://openbaton.github.io.
OpenDayLight [Online]. https://www.opendaylight.org.
OpenFog Reference Architecture for Fog Computing, Feb. 2017. Tech. Rep.

OPFRA001.020817, OpenFog Consortium, [Online]. https://www.iiconsortium.or
g/pdf/OpenFog_Reference_Architecture_2_09_17.pdf.

OpenStack Nova Filter Scheduler [Online]. https://docs.openstack.org/nova/latest/use
r/filter-scheduler.html.

OpenStack Service Function Chaining [Online]. https://docs.openstack.org/newton/net
working-guide/config-sfc.html.

Pan, J., McElhannon, J., 2018. Future edge cloud and edge computing for Internet of
Things applications. IEEE Internet Things J. 5 (1), 439–449. https://doi.org/
10.1109/JIOT.2017.2767608.

Qwilt [Online]. https://www.qwilt.com.
Ren, J., Zhang, D., He, S., Zhang, Y., Li, T., 2019. A survey on end-edge-cloud

orchestrated network computing paradigms: transparent computing, mobile edge
computing, fog computing, and cloudlet. ACM Comput. Surv. 52 (6) https://doi.org/
10.1145/3362031.

Rost, M., Schmid, S., 2020. On the hardness and inapproximability of virtual network
embeddings. IEEE/ACM Trans. Netw. 28 (2), 791–803.

Ruiz-Alvarez, A., Humphrey, M., 2014. Toward optimal resource provisioning for cloud
MapReduce and hybrid cloud applications. In: Proceedings of the 2014 IEEE/ACM
International Symposium on Big Data Computing (BDC), pp. 74–82. https://doi.org/
10.1109/BDC.2014.14.

Sahasrabudhe, S., Sonawani, S.S., 2015. Improved filter-weight algorithm for utilization-
aware resource scheduling in OpenStack. In: 2015 International Conference on
Information Processing (ICIP), pp. 43–47. https://doi.org/10.1109/
INFOP.2015.7489348.

Scharf, M., Stein, M., Voith, T., Hilt, V., 2015. Network-aware instance scheduling in
OpenStack. In: 2015 24th International Conference on Computer Communication
and Networks (ICCCN), pp. 1–6. https://doi.org/10.1109/ICCCN.2015.7288436.

SG13: future networks, with focus on IMT-2020, cloud computing and trusted network
infrastructures [Online]. https://www.itu.int/en/ITU-T/studygroups/2017-2020/1
3.

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., 2016. Edge computing: vision and challenges.
IEEE Internet Things J. 3 (5), 637–646. https://doi.org/10.1109/
JIOT.2016.2579198.

Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S., 2017. Towards QoS-aware fog service
placement. In: 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC), pp. 89–96. https://doi.org/10.1109/ICFEC.2017.12.

Sonkoly, B., Szab, R., Jocha, D., Czentye, J., Kind, M., Westphal, F.-J., 2015. UNIFYing
cloud and carrier network resources: an architectural view. In: 2015 IEEE Global
Communications Conference (GLOBECOM), pp. 1–7. https://doi.org/10.1109/
GLOCOM.2015.7417869.

Sonkoly, B., Szab, M., Nmeth, B., Majdn, A., Pongrcz, G., Toka, L., 2018. FERO: fast and
efficient resource orchestrator for a data plane built on docker and DPDK. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pp. 243–251.
https://doi.org/10.1109/INFOCOM.2018.8485953.

Sun, G., Li, Y., Liao, D., Chang, V., 2018a. Service function chain orchestration across
multiple domains: a full mesh aggregation approach. IEEE Trans. Netw. Serv. Manag.
15 (3), 1175–1191. https://doi.org/10.1109/TNSM.2018.2861717.

Sun, G., Li, Y., Li, Y., Liao, D., Chang, V., 2018b. Low-latency orchestration for workflow-
oriented service function chain in edge computing. Future Generat. Comput. Syst.
85, 116–128. https://doi.org/10.1016/j.future.2018.03.018.

Szalay, M., Haja, D., Dka, J., Sonkoly, B., Toka, L., 2019. Demo abstract: turning
OpenStack into a fog orchestrator. In: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pp. 947–948. https://
doi.org/10.1109/INFCOMW.2019.8845035.

Tacker [Online]. https://wiki.openstack.org/wiki/Tacker.
Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D., 2017a. On multi-

access edge computing: a survey of the emerging 5G network edge cloud architecture
and orchestration. IEEE Commun. Surv. Tutor. 19 (3), 1657–1681. https://doi.org/
10.1109/COMST.2017.2705720.

Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., Flinck, H., 2017b. Mobile edge computing
potential in making cities smarter. IEEE Commun. Mag. 55 (3), 38–43. https://doi.
org/10.1109/MCOM.2017.1600249CM.

The Linux Foundation projects: EdgeX Foundry [Online]. https://www.edgexfoundry.
org.

UNIFY virtualizer library [Online]. https://github.com/5GExchange/virtualizer.
VMTP [Online]. http://vmtp.readthedocs.io.
Vaishnavi, I., Czentye, J., Gharbaoui, M., Giuliani, G., Haja, D., Harmatos, J., Jocha, D.,

Kim, J., Martini, B., MeMn, J., Monti, P., Nmeth, B., Poe, W.Y., Ramos, A.,
Sgambelluri, A., Sonkoly, B., Toka, L., Tusa, F., Bernardos, C.J., Szab, R., 2018.
Realizing services and slices across multiple operator domains. In: NOMS 2018 -
2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–7. https://
doi.org/10.1109/NOMS.2018.8406168.

Vasona Networks [Online]. https://www.vasonanetworks.com.
Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R., 2016. Osmotic computing: a new

paradigm for edge/cloud integration. IEEE Cloud Comput. 3 (6), 76–83. https://doi.
org/10.1109/MCC.2016.124.

Tech. Rep. v2, ETSI White Paper: Network Functions Virtualisation (NFV), Oct. 2013
[Online]. http://portal.etsi.org/nfv/nfv_white_paper2.pdf.

Tech. rep. White Paper: Understanding Information Centric Networking and Mobile Edge
Computing, Dec. 2016. 5G Americas [Online]. https://www.5gamericas.org/wp-con
tent/uploads/2019/07/Understanding_Information_Centric_Networking_and_Mobi
le_Edge_Computing.pdf.

Xiao, Y., Krunz, M., 2017. QoE and power efficiency tradeoff for fog computing networks
with fog node cooperation. In: IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, pp. 1–9. https://doi.org/10.1109/INFOCOM.2017.8057196.

Xiong, Y., Sun, Y., Xing, L., Huang, Y., 2018. Extend cloud to edge with KubeEdge. In:
2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 373–377. https://doi.
org/10.1109/SEC.2018.00048.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J.,
Jue, J.P., 2019. All one needs to know about fog computing and related edge
computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330. https://
doi.org/10.1016/j.sysarc.2019.02.009.

Zanzi, L., Giust, F., Sciancalepore, V., 2018. M2EC: a multi-tenant resource orchestration
in multi-access edge computing systems. In: 2018 IEEE Wireless Communications
and Networking Conference (WCNC), pp. 1–6. https://doi.org/10.1109/
WCNC.2018.8377292.

Zhang, Q., Liu, L., Lee, K., Zhou, Y., Singh, A., Mandagere, N., Gopisetty, S., Alatorre, G.,
2014. Improving Hadoop service provisioning in a geographically distributed cloud.

B. Sonkoly et al.

https://doi.org/10.1109/nfv-sdn.2017.8169865
https://doi.org/10.1002/ett.3103
https://doi.org/10.1002/ett.3103
https://doi.org/10.1109/JIOT.2018.2838584
https://doi.org/10.1109/JIOT.2018.2838584
https://doi.org/10.1109/INFCOMW.2018.8407014
https://doi.org/10.1109/INFCOMW.2018.8407014
https://doi.org/10.1109/SECONW.2015.7328146
https://doi.org/10.1109/MCOM.2017.1700246
https://doi.org/10.1109/MCOM.2017.1700246
https://doi.org/10.1109/TCC.2014.2355225
https://doi.org/10.1109/TCC.2014.2355225
https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
https://futurenetworks.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf
http://5g.ieee.org/roadmap
http://5g.ieee.org/roadmap
http://www.interdigital.com
https://kubernetes.io
https://linuxcontainers.org
https://docs.openstack.org/install-guide/get-started-logical-architecture.html
https://docs.openstack.org/install-guide/get-started-logical-architecture.html
https://doi.org/10.1109/NETSOFT.2015.7116155
https://doi.org/10.1109/NETSOFT.2015.7116155
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
https://mesosphere.github.io/marathon
https://mesosphere.github.io/marathon
https://www.etsi.org/deliver/etsi_gs/MEC-IEG/001_099/004/01.01.01_60/gs_MEC-IEG004v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC-IEG/001_099/004/01.01.01_60/gs_MEC-IEG004v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://doi.org/10.1109/NFV-SDN.2016.7919470
https://doi.org/10.1109/NFV-SDN.2016.7919470
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.onap.org
http://openedgecomputing.org
https://www.open-o.org
https://osm.etsi.org
https://www.opnfv.org
http://openbaton.github.io
https://www.opendaylight.org
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://docs.openstack.org/nova/latest/user/filter-scheduler.html
https://docs.openstack.org/nova/latest/user/filter-scheduler.html
https://docs.openstack.org/newton/networking-guide/config-sfc.html
https://docs.openstack.org/newton/networking-guide/config-sfc.html
https://doi.org/10.1109/JIOT.2017.2767608
https://doi.org/10.1109/JIOT.2017.2767608
https://www.qwilt.com
https://doi.org/10.1145/3362031
https://doi.org/10.1145/3362031
http://refhub.elsevier.com/S1084-8045(20)30259-9/sref59
http://refhub.elsevier.com/S1084-8045(20)30259-9/sref59
https://doi.org/10.1109/BDC.2014.14
https://doi.org/10.1109/BDC.2014.14
https://doi.org/10.1109/INFOP.2015.7489348
https://doi.org/10.1109/INFOP.2015.7489348
https://doi.org/10.1109/ICCCN.2015.7288436
https://www.itu.int/en/ITU-T/studygroups/2017-2020/13
https://www.itu.int/en/ITU-T/studygroups/2017-2020/13
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/GLOCOM.2015.7417869
https://doi.org/10.1109/GLOCOM.2015.7417869
https://doi.org/10.1109/INFOCOM.2018.8485953
https://doi.org/10.1109/TNSM.2018.2861717
https://doi.org/10.1016/j.future.2018.03.018
https://doi.org/10.1109/INFCOMW.2019.8845035
https://doi.org/10.1109/INFCOMW.2019.8845035
https://wiki.openstack.org/wiki/Tacker
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/MCOM.2017.1600249CM
https://doi.org/10.1109/MCOM.2017.1600249CM
https://www.edgexfoundry.org
https://www.edgexfoundry.org
https://github.com/5GExchange/virtualizer
http://vmtp.readthedocs.io
https://doi.org/10.1109/NOMS.2018.8406168
https://doi.org/10.1109/NOMS.2018.8406168
https://www.vasonanetworks.com
https://doi.org/10.1109/MCC.2016.124
https://doi.org/10.1109/MCC.2016.124
http://portal.etsi.org/nfv/nfv_white_paper2.pdf
https://www.5gamericas.org/wp-content/uploads/2019/07/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
https://www.5gamericas.org/wp-content/uploads/2019/07/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
https://www.5gamericas.org/wp-content/uploads/2019/07/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
https://doi.org/10.1109/INFOCOM.2017.8057196
https://doi.org/10.1109/SEC.2018.00048
https://doi.org/10.1109/SEC.2018.00048
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1109/WCNC.2018.8377292
https://doi.org/10.1109/WCNC.2018.8377292

Journal of Network and Computer Applications 170 (2020) 102785

18

In: 2014 IEEE 7th International Conference on Cloud Computing (CLOUD),
pp. 432–439. https://doi.org/10.1109/CLOUD.2014.65.

Zhang, W., Li, S., Liu, L., Jia, Z., Zhang, Y., Raychaudhuri, D., 2019. Hetero-edge:
orchestration of real-time vision applications on heterogeneous edge clouds. In: IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1270–1278.
https://doi.org/10.1109/INFOCOM.2019.8737478.

Zhu, H., Huang, C., 2017. Availability-aware mobile edge application placement in 5G
networks. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
pp. 1–6.

Balázs Sonkoly is an associate professor at Budapest Univer
sity of Technology and Economics (BME) and he is the head of
MTA-BME Network Softwarization Research Group. He
received his Ph.D. (2010) and M.Sc. (2002) degrees in Com
puter Science from BME. He has participated in several EU
projects (FP7 OpenLab, FP7 UNIFY, H2020 5G Exchange) and
national projects. He was the demo co-chair of ACM SIGCOMM
2018, EWSDN’15,’14, IEEE HPSR’15. His current research
activity focuses on cloud / edge / fog computing, NFV, SDN,
and 5G.

Dávid Haja is a Ph.D. student at Budapest University of
Technology and Economics. He is a member of the High Speed
Networks Laboratory (http://hsnlab.hu) at the Department of
Telecommunications and Media Informatics. His main research
interests include Edge Computing, Software-Defined
Networking (SDN), Network Function Virtualization (NFV)
and Resource Orchestration.

Balázs Németh is an Industrial Ph.D. student at Budapest
University of Technology and Economics (BME) in cooperation
with Ericsson Research. He obtained his M.Sc. degree at BME as
a Computer Science Engineer in info-communication speciali
zation (2016). He has been working on orchestration algo
rithms for the H2020 5G-PPP 5G Exchange (5GEx) project.
Currently, he is pursuing his Ph.D. degree in network softwa
rization with special focus on orchestration algorithms and
next generation network models.

Márk Szalay is a Ph.D. student at Budapest University of
Technology and Economics. He is a member of the High Speed
Networks Laboratory (http://hsnlab.hu) at the Department of
Telecommunications and Media Informatics. His main research
interests include hardware (router / switch / NIC) design,
network programming, software-defined networking and
network function virtualization.

János Czentye is currently in his third year of his Ph.D. studies
at Budapest University of Technology and Economics (BME).
He completed an M.Sc. (2014) in the topic of Networks and
Services with highest honours. He worked at High Speed Net
works Laboratory (HSNLab) contributing in research projects
(FP7 UNIFY, H2020 5GEx) and gained wide knowledge about
SDN/NFV, microservice and cloud technologies. His current
Ph.D. research focuses on cloud native service modeling and
provisioning.

Róbert Szabó is a principal researcher at Research Area Cloud
Systems and Platform, Ericsson Research. Since joining Erics
son in 2013, he was the technical coordinator of the EU-FP7
Unifying Cloud and Carrier Networks (UNIFY) integrated
project (2013–2016) and he was the project coordinator of the
H2020 5G-PPP 5G Exchange (5GEx) innovation action
(2015–2018). Recently, he is working with distributed / edge
cloud, zero touch automation, and network function virtuali
zation. He worked as an associate professor at Budapest Uni
versity of Technology and Economics (BME), where he was the
deputy head of the Dept. of Telecommunications and Media
Informatics between 2008 and 2010. He holds a Ph.D. and M.
Sc. in E.E., and an MBA from BME.

Rehmat Ullah is currently working as an Assistant Professor
with the Department of Computer Engineering at Gachon
University, Global Campus, South Korea. He received his B.S.
and M.S. degrees in computer science (major in wireless com
munications and networks) from COMSATS University Islam
abad, Pakistan, in 2013 and 2016, respectively and the Ph.D.
degree in electronics and computer engineering from Hongik
University, South Korea, in February 2020. His research fo
cuses on the broader area of future Internet and network sys
tems, particularly the development of architectures,
algorithms, and protocols for emerging paradigms, such as
information centric networking/named data networking (ICN/
NDN), Internet of Things (IoT), cloud/edge/fog computing for
IoT, 5G and beyond.

Byung-Seo Kim received his B.S. degree in Electrical Engi
neering from In-Ha University, In-Chon, Korea in 1998 and his
M.S. and Ph.D. degrees in Electrical and Computer Engineering
from the University of Florida in 2001 and 2004, respectively.
He is currently Professor in Dept. of Software and Communi
cations Eng., Hongik University, Korea. He is IEEE Senior
Member and Associative Editor of IEEE Access. His research
interests include the design and development of efficient
wireless/wired networks including link-adaptable/cross-layer-
based protocols, multi-protocol structures, wireless CCNs/
NDNs, Mobile Edge Computing, physical layer design for
broadband PLC, and resource allocation algorithms for wireless
networks.

László Toka is assistant professor at Budapest University of
Technology and Economics, vice-head of HSNLab (http://h
snlab.hu), and member of both the MTA-BME Network Soft
warization and the MTA-BME Information Systems Research
Groups. He obtained his Ph.D. degree from Telecom ParisTech
in 2011, he worked at Ericsson Research between 2011 and
2014, then he joined the academia with research focus on
software-defined networking, cloud computing and artificial
intelligence.

B. Sonkoly et al.

https://doi.org/10.1109/CLOUD.2014.65
https://doi.org/10.1109/INFOCOM.2019.8737478
http://refhub.elsevier.com/S1084-8045(20)30259-9/sref88
http://refhub.elsevier.com/S1084-8045(20)30259-9/sref88
http://refhub.elsevier.com/S1084-8045(20)30259-9/sref88
http://hsnlab.hu
http://hsnlab.hu
http://hsnlab.hu
http://hsnlab.hu

	Scalable edge cloud platforms for IoT services
	1 Introduction
	2 An illustrative use-case
	3 Proposed architectures and algorithms
	3.1 DARK: extended VIM for a single provider
	3.1.1 Resource and service models
	3.1.2 Mapping algorithm
	3.1.3 Migrating VNFs

	3.2 MORCH: orchestration for multi-layer architecture
	3.2.1 Proposed architecture
	3.2.2 Highlights of the key algorithms

	4 Proof of concept prototypes
	4.1 Extended OpenStack
	4.1.1 Network status measurement
	4.1.2 OpenStack scheduler algorithm and modifications
	4.1.3 Scheduling SFCs with OpenStack Heat
	4.1.4 Challenges and limitations of OpenStack

	4.2 Multi-layer orchestration system
	4.2.1 Multi-domain resource orchestrator
	4.2.2 Information model and the resource control API
	4.2.3 OpenStack Domain Orchestrator
	4.2.4 Docker Domain Orchestrator
	4.2.5 SDN and legacy IP Network domains

	5 Evaluation
	5.1 Description of the experiments
	5.2 OpenStack experiments with DARK extension
	5.3 Multi-layer orchestration system based on MORCH
	5.4 Discussion

	6 Related work
	6.1 Standardization and commercial edge solutions
	6.2 Orchestration systems
	6.3 Network embedding and task scheduling
	6.4 Virtual infrastructure adaptation

	7 Conclusion
	Credit author statement
	Declaration of competing interest
	Acknowledgements
	References

